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ABSTRACT 

 

In the study of Computational Fluid Dynamics there is a fundamental family of partial differential 

equations known as hyperbolic conservation laws which are used to describe transport phenomena such 

as advection and propagation. Solutions to these equations can sometimes incorporate functional 

discontinuities which prove intractable for standard finite difference schemes to resolve, if they even 

converge to a solution at all, which normally occurs at the cost of setting an infeasibly small time step 

discretization and is thus computationally unfavorable. Weighted Essentially Non-Oscillatory (WENO) 

finite difference schemes were thus developed in [8] and subsequently improved upon in [6, 7, 10, 18] 

and others in order to provide high order accurate solutions to such equations involving strong shocks 

and/or discontinuities. Total Variation Diminishing time-marching and Successive Over-Relaxation 

Gauss-Seidel schemes can be utilized within the WENO framework to provide accelerated convergence 

potential [5]. Through the use of Mathworks’ Matlab programming suite various examples of 1- and 2-

dimensional nonlinear initial condition and boundary value problems are shown to be solved using a 

third-order accurate time-marching and fast-sweeping WENO algorithm. A comparison of these time-

marching and fast-sweeping methods is then made to exemplify the degree to which convergence can 

be accelerated while still maintaining uniform high order accuracy. 
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FOREWORD 

 

Throughout the production of this work, the ultimate aim had always been to understand, implement, 

and analyze two separate finite difference schemes for solving the steady state of advection dominated 

partial differential equations; to compare their respective rates of convergence and to show increased 

efficiency. Over time this original goal bifurcated enough to include a discussion on CFL conditions and 

the possibility for post-processing analysis to enhance resolution in the areas of estimated 

discontinuities. As these later developments are tangential to the convergence study, only Examples 1 

and 6 receive any discussions of CFL conditions, and only Examples 2 and 3 are given any post-

processing resolution enhancement near the shock location. Examples 4 and 5 simply display the 

estimated discontinuous regions, as a segment and a point. A more rigorous investigation with such 

post-processing foremost in mind would be quite interesting, but is beyond the scope of this thesis.  

 The figures and tables of this thesis will thus tell two different stories. The figures for each 

example showcase ideas surrounding either CFL condition manipulation or discontinuity estimation. The 

tables are then concerned with the iteration rates of convergence, along with calculating the order of 

convergence across various grid discretizations, to verify third-order accuracy. The final results are a 

comparison of worst and best iteration counts to achieve convergence. 

 Altogether this is meant to be a self-contained and comprehensive dissertation on the ideas of 

finite difference methods, the concepts of weighted essentially non-oscillatory schemes, Runge-Kutta 

third order time-marching and Gauss-Seidel fast-sweeping methods. The mathematics and the 

computer code are extensively represented in this thesis, and to make the coding components less 

daunting, a pseudo-code example is given in the Appendix section.  

 

 

 

 

-cb 
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1. INTRODUCTION 

 

 

PREFACE 

 

 

Within the field of numerical analysis, algorithmic schemes which yield high-order accurate 

approximations of weak solutions to systems of partial differential equations are crucially important 

assets in the study of Computational Fluid Dynamics in particular, and in the creation of physical 

modelling systems in general. To simulate real-world physical phenomena within the confines of a 

computerized architecture must surely be considered to be one of the major achievements of 20th 

Century scientific advancement, and the awe-inspiring products of such achievements should be 

understood to be reflections of the incredible ingenuity of the algorithms employed to produce them. 

These algorithms, although of monumental utility and applicability, are imperfect by design, and, 

dependent upon the scenarios for which they are used, these imperfections can become manifest to 

such a degree so as to ruin the efficacy of the algorithm completely. A hypothetical dream algorithm 

would be one which offers precision to an arbitrary degree, accomplishing such accuracy without any 

exorbitant toll on resources, with the ability to solve entire swaths of similar problems without 

prejudice. Concerning finite difference algorithms, such a hypothetical dream is just that; however there 

are meaningful adaptations which can be made to the core schematic which help ameliorate these 

functional drawbacks under specific conditions. 

 Now, various numerical approximation algorithms may prove to be better suited in practice for 

solving any particular system of partial differential equations, with such contenders as finite volume, 

finite element, hybrid discontinuous Galerkin methods, etc. Finite difference schemes—albeit primitive 

algorithms by comparison—can still prove to be of considerable utility, despite their relative simplicity, 

and in certain cases can achieve parity in accuracy and iteration count with other more extensive 

frameworks [2, 4]. What is important in the successful application of such finite difference methods (i.e. 

that convergence is possible at a manageable exhaustion of time and resources, at the desired accuracy) 

is that for one, the specific partial differential equations to be solved are friendly to the abstractions of 

the finite difference framework, and that two, the solutions themselves are equally, friendly. Meaning 

that the equations themselves refer to quantities with rates of change which admit to some 

representation in a discretized limit definition form, and that the solutions to such equations are equally 
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well established given this discretization. To elucidate the former a bit, the following section will provide 

some exposition on the matter of scalar hyperbolic conservation laws: the family of partial differential 

equations which this paper is primarily concerned with. To then clarify the latter, the final section of this 

introduction will detail the methodology of finite difference algorithms in general, including a 

rudimentary derivation of such schemes. It will end with some of the central limitations to the more 

standard formulations of finite difference schemes, in order to provide the necessary motivations 

behind the development of Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory 

schemes. 

 

 

SCALAR HYPERBOLIC CONSERVATION LAWS 

 

 

A fundamental component to any isomorphic abstraction of the dynamics of physically realizable 

systems into a set of differential equations is the requirement that such equations obey the laws of 

conservation. If we consider the propagation of a wave, or the flow of traffic, or the movement of gas 

particles within a container, or the advection of heat, then it must be foremost assumed that the density 

of these quantities at any particular location is entirely proportional to the amount to which these 

quantities have or will flux through the region bounding this location. As is often stated in physics, 

nothing is created or destroyed in these systems (the height of a wave cannot spontaneously increase or 

decrease from nowhere, for instance, but can do so only because of the dynamics of the neighboring 

wave heights), and because of this restriction, the equations which describe these phenomena must 

conserve the relative quantities therein [1, 2, 3, 4, 20]. The canonical formalization of such a 

conservation law written in advection form is presented below. 

 

1.1)   𝑈𝑡 + 𝑓(𝑈)𝑥 = 𝜙 

 

The function 𝑓 in (1.1) defines the fluxing of the quantity 𝑈, where 𝜙 denotes the amount of source or 

sink present. If we assume the absence of a source term, we can perform some rough integration of 

(1.1) in order to stress the notion of the fluxing of 𝑈 in deriving a solution, over an arbitrary interval 

[𝑎, 𝑏]. 
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[FIGURE 1] 

An arbitrary 1-dimensional function 𝑈(𝑥) with dynamics that can be 

understood in an advection dominated framework. Assuming 𝑈(𝑥)  models the 

propagation of a right-moving wave, the density of 𝑈(𝑥) within the interval 

[𝑎, 𝑏] can be obtained by examining the aggregate fluxing of 𝑈(𝑥)  across this 

interval, i.e. the inflow at  𝑥 = 𝑎 minus the outflow at  𝑥 = 𝑏. 

 

1.2)  ∫ 𝑈(𝑥, 𝑡)𝑡𝑑𝑥 = −∫ 𝑓(𝑈(𝑥, 𝑡))
𝑥
𝑑𝑥

𝑏

𝑎

𝑏

𝑎
 

 

1.3)  ∫ 𝑈(𝑥, 𝑡)𝑡𝑑𝑥 =
𝑏

𝑎
𝑓(𝑈(𝑎, 𝑡)) − 𝑓(𝑈(𝑏, 𝑡)) = (𝑖𝑛𝑓𝑙𝑜𝑤 𝑎𝑡 𝑎) − (𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑎𝑡 𝑏) 

 

As a means to illuminate the field of relevant players in this story, listed below are some of the more 

familiar partial differential equations which belong to this family of conservation laws [2].  

 

1.4)  𝑈𝑡 + 𝑐𝑈𝑥 = 0    [Advection] 

 

1.5)  𝑈𝑡𝑡 − 𝑐
2𝑈𝑥𝑥 = 0   [Wave] 

 

1.6)  𝜌𝑡 + ∇ ∙ 𝐽 = 0    [Continuity] 

 

1.7)  𝑈𝑡 +
1

2
𝑈2𝑥 = 0   [Inviscid Burgers] 

 

𝑈(𝑥) 

𝑎 𝑏 𝑥 
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By representing conserved quantities whose dynamics are entirely dictated by a fluxing of relative 

density across some arbitrary interval, the above equations readily translate themselves over to a 

discretized framework of finite difference schemes which employ some applicable fluxing model. To 

focus in on and demystify the terminology behind hyperbolic conservation laws in particular [4], of 

which (1.5) and (1.7) are examples, two levels of description can be offered, both of which refer to 

similar basic shared structures, just stated in different ways. The first pertains to the value of the 

discriminant of a generalized second order linear partial differential equation, given below. 

 

1.8)  𝐴𝑈𝑡𝑡 + 𝐵𝑈𝑥𝑡 + 𝐶𝑈𝑥𝑥 + 𝐷𝑈𝑡 + 𝐸𝑈𝑥 + 𝐹𝑈 + 𝐺 = 0 

 

1.9)   {
𝐵2 − 4𝐴𝐶 < 0                         𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐

𝐵2 − 4𝐴𝐶 = 0                    𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐
𝐵2 − 4𝐴𝐶 > 0                  𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐

 

 

Another mode in which to understand the categorization of such equations is by examining the set of 

eigenvalues generated by the associated Jacobian matrix for a given system of conservation laws 

(whereby the assumed system of conservation laws thus far has been considered to be systems of single 

laws [where, for example, the Euler equations in convective form is a system of three conservation laws, 

referring to the conservation of mass, momentum, and energy respectively]). In terms of an 𝑛 x 𝑛 

system of conservation laws 

 

1.10)  

{
 
 

 
 
𝑈𝑡
1 + 𝑓1(𝑈1, … , 𝑈𝑛)𝑥 = 0

.

.

.
𝑈𝑡
𝑛 + 𝑓𝑛(𝑈1, … , 𝑈𝑛)𝑥 = 0

 

 

we can write a condensed form of such a system as 

 

 1.11)  𝑈𝑡 + 𝐴(𝑈)𝑈𝑥 = 0 

 

 1.12)  𝐴(𝑈) = (

𝜕𝑓1

𝜕𝑈1
⋯

𝜕𝑓1

𝜕𝑈𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑈1
⋯

𝜕𝑓𝑛

𝜕𝑈𝑛

) 
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The given system of conservations laws is then considered to be strictly hyperbolic if the Jacobian matrix 

(1.12) has 𝑛 real and distinct eigenvalues, ranging from 

 

1.13)  𝜆1(𝑈) < ⋯ < 𝜆𝑛(𝑈) 

 

The final term demanding insight is the scalar in scalar hyperbolic conservation laws. In (1.1) the 

presented equation is already in the form of a scalar conservation law, but to provide some context, 

consider the nonlinear transport equation 

 

1.14)  𝑈𝑡 + 𝑎(𝑥, 𝑡)𝑈𝑥 = 0 

 

1.15)  𝑎(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) 

 

Then (1.14) can be rewritten as 

 

1.16)  𝑈𝑡 + 𝑈𝑈𝑥 = 0 

 

which can be rewritten further still in conservative form as 

 

 1.17)  𝑈𝑡 + (
1

2
𝑈2𝑥) = 0 

 

which is exactly (1.7), the inviscid Burgers Equation [1]. This equation represents one of the more 

quintessential scalar hyperbolic conservation laws, and serves as a simplified model for more robust 

fluid dynamics. This equation will be treated quite comprehensively in this thesis. To fit all of the pieces 

together, (1.17) involves a scalar manipulation of the quantity 𝑈, is considered hyperbolic because of 

the positive value of its discriminant or, equivalently, because it possesses real and distinct eigenvalues 

for its associated Jacobian matrix, and the underlying quantity 𝑈 is conserved throughout its domain as 

its dynamics are entirely determined by the fluxing of its density across arbitrary intervals. Such is the 

elucidation of scalar hyperbolic conservation laws. 

Now, the degree to which these definitions are illuminating can be tenuous, but the significance 

of these designations will become apparent insofar as they help select the most suitable approach to 

solving each equation in kind, where certain approaches can vary drastically from type to type. By 
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clearly identifying the structure of the partial differential equations at hand, certain methodologies are 

either perfectly valid or terribly equipped at offering solutions. In a later section it will be shown that 

hyperbolic conservation laws in particular offer strategic advantages when constructing numerical 

approximation techniques, in large part because of their reliance on fluxing terms which lend 

themselves nicely to finite difference schemes in general. In conjunction with this is the fact that the 

solutions to such conservation laws follow characteristic curves, and this allows for the speedy 

convergence of methods like fast sweeping techniques.  

 

 

FINITE DIFFERENCE METHODS 

 

 

Although there has been sizeable mention of finite difference methods at large, a more thorough 

discourse on the matter is warranted and presented here. Starting with the somewhat innocuous 

looking limit definition of the derivative  

 

1.18)  𝑓′(𝑥0) = limℎ→0
𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
 

 

it should be immediately clear that a computerized framework tasked with solving any of the equations 

listed above (1.4 – 1.7) will necessarily make use of a modified interpretation of differentiation when 

compared with (1.18). Concepts like instantaneous rate of change or infinitesimals, epitomized by the 

inclusion of the limit in the above form, are completely alien to finite computer architectures, and must 

be dispensed with in favor of more quantifiable definitions [3,4]. A more palatable formulation occurs 

with the removal of the limit, for sufficiently small ℎ, at the cost of no longer upholding true equality. 

 

 1.19)  𝑓′(𝑥0) ≅
𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
 

 

To regain equality, we can construct a general form using the first Lagrange polynomial expansion of the 

function 𝑓(𝑥),  which is then differentiated, for some 𝜉(𝑥) between 𝑥0  and 𝑥0 + ℎ 

 

 1.20)  𝑓(𝑥) =
𝑓(𝑥0)(𝑥−𝑥0−ℎ)

−ℎ
+
𝑓(𝑥0+ℎ)(𝑥−𝑥0)

ℎ
+
(𝑥−𝑥0)(𝑥−𝑥0−ℎ)

2
𝑓′′(𝜉(𝑥)) 
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 1.21)  𝑓′(𝑥) =
𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
+
2(𝑥−𝑥0)−ℎ

2
𝑓′′(𝜉(𝑥)) +

(𝑥−𝑥0)(𝑥−𝑥0−ℎ)

2
𝑓′′(𝜉(𝑥))𝑥 

If the value 𝑥0 is set equal to 𝑥, then the more problematic terms in (1.21) drop out, and what is left is a 

very similar formulation to (1.19) but without recourse to approximation 

 

 1.22)  𝑓′(𝑥) =
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
−
ℎ

2
𝑓′′(𝜉) 

 

Acknowledging that the magnitude of the error is directly proportional to the size of ℎ, in the sense that 

previously the ability to ensure equality relied on the reduction of ℎ to a magnitude of zero, a truncation 

error is thus incurred. Now, if we restrict ourselves to discussions of one variable 𝑥, and we replace ℎ 

with its equivalent form as 𝑑𝑥 which is finite in value (in contrast to its otherwise infinitesimal 

connotation), we can succinctly rewrite (1.22) with our truncation error in big 𝑂 notation, as a means of 

treating the incurred error as a bulk term 

 

1.23)  𝑓′(𝑥) =
𝑓(𝑥+𝑑𝑥)−𝑓(𝑥)

𝑑𝑥
− 𝑂(𝑑𝑥) 

 

We can now apply (1.23) to a test case involving the advection equation (1.4), where c is taken to be 

negative unity. With the introduction of a second variable 𝑡, we also define the equivalent temporal 

discretization 𝑑𝑡, along with sub/superscripts indicating the spatial and time nodes respectively, 

meaning that given an evaluation of 𝑈 at time step 𝑛 and spatial node 𝑖 we can progress our evolution 

of 𝑈 one step further in time to the 𝑛 + 1th time position, employing spatial values taken at 𝑖 and/or its 

neighbors. 

 

 1.24)  
𝑈𝑖
𝑛+1−𝑈𝑖

𝑛

𝑑𝑡
=

𝑈𝑖+1
𝑛 −𝑈𝑖

𝑛

𝑑𝑥
+ 𝑂(𝑑𝑥)   [Forward Difference] 

 

 1.25)  
𝑈𝑖
𝑛+1−𝑈𝑖

𝑛

𝑑𝑡
=

𝑈𝑖
𝑛−𝑈𝑖−1

𝑛

𝑑𝑥
+ 𝑂(𝑑𝑥)   [Backward Difference] 

 

 1.26)  
𝑈𝑖
𝑛+1−𝑈𝑖

𝑛

𝑑𝑡
=

𝑈𝑖+1
𝑛 −𝑈𝑖−1

𝑛

2𝑑𝑥
+ 𝑂(𝑑𝑥2)   [Centered Difference] 

 

Taking this last equation (1.26), we can rearrange the terms to provide a direct evaluation of 𝑈 at the 

next time step 𝑛 + 1 at the spatial node 𝑖 
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 1.27)  𝑈𝑖
𝑛+1 =

1

2

𝑑𝑡

𝑑𝑥
(𝑈𝑖+1

𝑛 − 𝑈𝑖−1
𝑛 ) + 𝑈𝑖

𝑛 + 𝑂(𝑑𝑥2) 

 

Thus, given initial and boundary conditions along some domain, we can march our solution forward in 

time by steps of 𝑑𝑡 for each iteration. To showcase a wider range of possible finite difference schemes, 

three-point and five-point schemes are presented below, in order to cultivate an appreciation for how 

each scheme in principle relies on a particular choice of stencil. 

 

 1.28)  𝑓′(𝑥) =
1

2

1

𝑑𝑥
(−3𝑓(𝑥) + 4𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥 + 2𝑑𝑥)) + 𝑂(𝑑𝑥2) 

    [Three-Point Endpoint] 

 

 1.29)  𝑓′(𝑥) =
1

12

1

𝑑𝑥
(−25𝑓(𝑥) + 48𝑓(𝑥 + 𝑑𝑥) − 36𝑓(𝑥 + 2𝑑𝑥) + 16𝑓(𝑥 + 3𝑑𝑥) −

                                                            … 3𝑓(𝑥 + 4𝑑𝑥)) + 𝑂(𝑑𝑥4) 

    [Five-Point Endpoint] 

 

And ad infinitum. Now two things to observe from (1.28) and (1.29) is that for one, as we increase the 

number of points which we include in our stencil (for example in (1.28), our stencil is considered to be 

the points 𝑗, 𝑗 + 1, and 𝑗 + 2, in contrast to the stencils of equations (1.24)-(1.26) which utilized two 

point stencils only), we are able to obtain higher and higher order accurate approximations to the actual 

value, which is seen by the degree of the truncation error term in each equation. This should make 

intuitive sense, as we are gathering more and more information about the underlying function 𝑈, and 

this will help to reveal the nature of its derivatives the more information we include. Second, it may 

have been guessed at, but a soft requirement for these methods is that the function 𝑈 is continuous and 

well-defined on the entire domain. If a discontinuity were to arise which is spanned by any given choice 

of spatial stencil—a problem that is more apparent as we make use of more and more points per 

stencil—then our scheme will fail to converge to the proper value. If the difference between consecutive 

stencil nodes is substantially large, then an erroneous value for the derivative will result, as opposed to a 

piecewise solution. It would appear that an adaptive, many-point stencil scheme is needed to provide 

uniformly high order accurate approximations to piecewise discontinuous solutions to such partial 

differential equations, and that scheme is WENO. 
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2. WEIGHTED ESSENTIALLY NON-OSCILLATORY (WENO) FORMALIZATION 

 

 

DIVERGENCE AND THE GIBB’S PHENOMENON 

 

 

At present, we find ourselves confronted by a particular family of partial differential equations, namely 

scalar hyperbolic conservation laws epitomized by (1.17), while simultaneously we’re equipped with a 

methodology for approximating solutions to such equations, here referring to finite difference schemes. 

Given smooth, continuous definitions for these equations and their solutions in general, there are no 

existential issues concerning the utilization of any given finite difference scheme. This is not the case 

however when functional discontinuities arise in either the partial differential equation’s initial 

conditions or in the solutions themselves. The mere presence of such discontinuities poses a serious 

hindrance to any given finite difference framework’s ability to approximate solutions, whereby 

convergence is highly jeopardized, and even when convergence is achieved, approximations can be 

riddled with errant oscillations known as the Gibb’s Phenomenon in the direct vicinity surrounding these 

discontinuities [4]. Although convergence can sometimes be forced at the expense of a recklessly small 

Courant-Friedrichs-Lewy (CFL) condition—the ratio of temporal to spatial discretization— 

 

2.1)  𝛼
𝑑𝑡

𝑑𝑥
≤ 𝐶𝐹𝐿     𝛼 = 𝑚𝑎𝑥|𝑓′(𝑈)𝑥| 

 

it is generally seen as a mitigation technique and not an asset to demand smaller and smaller time steps 

in order to salvage an improper algorithm. Such a small designation for the CFL condition where 

𝑑𝑡 ≪ 𝑑𝑥 directly impacts the rate of convergence for these algorithms (a smaller CFL is slower by 

definition), and micromanaging this value is indicative of a structural algorithmic issue. For most 

scenarios a CFL condition between 0.5 and 1 is quite standard, where the more stable an algorithm is 

the larger its allowed CFL condition can be.  

 Now even if we were not to mind the hit to our running time and the overall increase in the 

iteration count for our approximation algorithm that would be guaranteed by a contrived choice of CFL 

condition, our forced convergence is still not without its drawbacks. When using finite sums of 

continuous functions to approximate discontinuous solutions, oscillatory behavior manifests itself at 

these points of discontinuity, and is apparent even for high order approximations. This is a notorious  
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[FIGURE 2] 

An exemplification of the Gibbs Phenomenon. A test function with its Fourier 

Series (2.2a/2.2b) can be approximated by its Fourier Series decomposition, 

and truncated versions of this series are graphed. The oscillations around the 

endpoints and central discontinuity are observed, highlighting the issues which 

arise as higher and higher order approximations are applied. Away from these 

discontinuities, the series attains high accuracy, but near such discontinuities 

large oscillations result. 

 

2.2a)  𝑓(𝑥) = {
0.75, 0 < 𝑥 < 𝜋

−0.75, 𝜋 ≤ 𝑥 < 2𝜋
 

 

2.2b)  𝑓(𝑥) =
1.5

𝜋
∑

1

𝑛
(1 − (−1𝑛))sin (𝑛𝑥)∞

𝑛=1  

  

affliction in the realm of Fourier Series (Figure 2), and this Gibb’s Phenomenon also occurs in the 

utilization of finite difference methods. 

To showcase this phenomenon as it pertains to the usage of finite difference methods, as well as 

to exemplify the inability for finite difference methods to converge (where even the best case scenario 

for convergence entails heavy oscillations) unless dramatically small CFL conditions are imposed, we 

briefly turn our attention to an example that will receive more rigorous treatment in sections 3 and 4. A 

centered difference scheme (1.26) is employed to solve (2.3a) with given boundary and initial conditions 

(2.3b) and steady state solution (2.3c), with a discretization of 80 spatial nodes across the domain. 
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[FIGURE 3] 

 

 

 

[FIGURE 4] 

Centered difference approximations to (2.3a) at 𝑡 = 5 seconds with 𝑁 = 80 

evaluated with two separate CFL conditions. Above (Figure 3) the CFL condition 

is set to 0.15, where even such a small CFL condition is clearly divergent. Below 

(Figure 4) the CFL condition is set to 0.0015 which is comically small. Note the 

oscillations that are present, most notable around the discontinuity at 

𝑥 = 0.625 
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 2.3a)  𝑈𝑡 − (
1

2
𝑈2)

𝑥
= 𝑈     0 ≤ 𝑥 ≤ 1 

 

Boundary conditions 

 

 2.3b)  𝑈(0, 𝑡) =
3

4
,     𝑈(1, 𝑡) = −

1

2
 

 

Initial conditions 

 2.3b)  𝑈(𝑥, 0) = {

3

4
,     𝑥 < 0.5

−
1

2
,     𝑥 ≥ 0.5

 

   

Steady state solution 

 2.3c)  𝑈(𝑥) = {

3

4
− 𝑥,     𝑥 < 0.625

𝑥 −
1

2
,     𝑥 ≥ 0.625

 

 

Due to the degree to which steady state convergence is impossible given the continual oscillations, the 

algorithm is stopped after 𝑡 = 5 seconds. 

What is ostensibly happening in (Figure 4) is that the problems (starkly visible on the left of 

Figure 3) associated with using a single stencil to approximate a discontinuous solution are mitigated by 

slowing down the progression of the solution with the implementation of a much smaller time step 

relative to the spatial step size, resulting in a CFL condition roughly 10 times smaller than the literature 

standard. In this way erroneous values attained near a discontinuity are not allowed to spread too 

quickly into the smoother regions, and these values are thus tempered as they dissipate. The Gibb’s 

Phenomenon is quite apparent still in (Figure 4), and in (Figure 3) it can be seen that massive oscillations 

propagating from the central discontinuity are resulting in a chaotic scene at the leftmost endpoint. The 

key component to understand here is that the choice of stencil (1.26) at least twice per iteration 

(depending on the discretization) is forced to process functional data on either side of the discontinuity 

at 𝑥 = 0.625. This results in the imposition of a large and inaccurate rate of change that is assumed to 

connect to the surrounding domain continuously, when instead it is a piecewise connection, and the 

battle of fitting a continuous interpretation to a piecewise reality is one of overshooting, then 

undershooting, then overshooting again etc., leading to ever present and intractable oscillations. Clearly 

such methods, as they currently stand, are unstable tools in approximating steady state solutions to 

hyperbolic conservation laws. In order to salvage the finite difference framework in light of the demands 
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inherent in discontinuous solutions, a dynamic and multi-stencil approach is to be developed in the 

proceeding section, one that is (essentially) free from the Gibb’s Phenomenon and is convergent under 

more standard CFL conditions. 

 

 

THIRD-ORDER WEIGHTED ESSENTIALLY NON-OSCILLATORY (WENO) FINITE DIFFERENCE SCHEME 

 

 

The reliance on a single stencil without consideration for the underlying smoothness of the function has 

been shown to be the primary culprit for the failings that were encountered in the previous section in 

the development of a finite difference methodology in which to approximate discontinuous solutions to 

partial differential equations. The standard finite difference framework is just far too rigid in its uniform 

application of its choice of stencil at each point, and this blind insistence on a singular stencil at best 

results in oscillatory behavior near discontinuities, or clear divergence at worst. The third order accurate 

weighted essentially non-oscillatory scheme elects to remedy this issue by taking the convex 

combination of a set of four approximations, incorporating a total of five points embedded within four 

separate two-point stencils, each of which is weighted by a smoothness indicator that determines the 

degree to which a shock or discontinuity is spanned by that particular stencil [5, 8, 9, 10]. When a 

discontinuity is spanned by a specific stencil, it is weighted to nearly zero, thus minimizing the impact of 

approximations gleaned from this stencil, and the remaining stencils which query point values over 

smoother domains are to be used instead. Thus from four candidate stencils there will be at least one 

which is guaranteed to provide meaningful approximations. These stencils are tasked with 

approximating inter-nodal flux values, namely at 𝑥
𝑖+

1

2

 and 𝑥
𝑖−

1

2

 , which are then used to approximate the 

total fluxing at the point 𝑥𝑖 . 

It is precisely this multi-stencil approach that is then coupled with an astute procedure for 

generating nonlinear weight coefficients which lays the groundwork for the success of WENO. The four 

candidate stencils shown in (Figure 4) can be written as  

 

 2.4)  𝑆(1) = {𝑥𝑖−2, 𝑥𝑖−1}    𝑆(2) = {𝑥𝑖−1, 𝑥𝑖} 

 

   𝑆(3) = {𝑥𝑖, 𝑥𝑖+1}    𝑆(4) = {𝑥𝑖+1, 𝑥𝑖+2} 
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[FIGURE 5] 

Four candidate stencils spanning five point values. Two approximations are 

made at inter-nodal values 𝑥
𝑖+
1

2

 and 𝑥
𝑖−
1

2

 in order to estimate the total flux at 

the central point value 𝑥𝑖  by use of a linear combination of all available stencils, 

weighted based upon the underlying smoothness of the function. 

 

where the superscript indicates the specific candidate stencil from which the points are chosen. Stencils 

for 𝑛 = 1,2 are used in the approximation of the flux at the location 𝑥
𝑖−

1

2

  where for 𝑛 = 3,4  we are 

able to approximate the flux at 𝑥
𝑖+

1

2

.  

Now, much has been said of this concept of fluxing, and it is a key component to advection 

dominated conservation laws and is in need of some illumination. As exemplified in (Figure 1), the 

dynamics of some conserved quantity which is within a bounded region can be approximated by 

examining the degree to which this conserved quantity enters or leaves this region: a.k.a. its flux. There 

are several different monotone fluxing models available, however this thesis utilizes the Lax-Friedrichs 

flux splitting model exclusively [5, 16], given below 

 

 2.5a)  {
𝑓+(𝑈𝑖) =

1

2
(𝑓(𝑈𝑖) + 𝛼𝑈𝑖)

𝑓−(𝑈𝑖) =
1

2
(𝑓(𝑈𝑖) − 𝛼𝑈𝑖)

  Lax-Friedrichs flux splitting 

 

 2.5b)  𝛼 = 𝑚𝑎𝑥|𝑓′(𝑈)𝑥| 

 

The + and – superscripts are meant to indicate which direction is more heavily biased, or rather from 

which direction more point values are taken, either from the left or from the right respectively, as a 

means to make explicit the concept of right travelling or left travelling flux (a little confusing, I know). 

𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

Stencil 1 Stencil 3 

Stencil 2 

𝑥
𝑖+
1
2

 

Stencil 4 

𝑥
𝑖−
1
2
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We are finally equipped with the proper terminology to express the approximations alluded to earlier 

regarding flux values at inter-nodal values.  

 

 2.6a)  𝑓
𝑖+

1

2

+ = 𝜔1 [
1

2
𝑓+(𝑈𝑖) + 

1

2
𝑓+(𝑈𝑖+1)] + 𝜔2 [−

1

2
𝑓+(𝑈𝑖−1) +

3

2
𝑓+(𝑈𝑖)] 

 

 2.6b)  𝑓
𝑖+

1

2

− = 𝜔3 [
3

2
𝑓−(𝑈𝑖+1) − 

1

2
𝑓−(𝑈𝑖+2)] + 𝜔4 [

1

2
𝑓−(𝑈𝑖) +

1

2
𝑓−(𝑈𝑖+1)] 

 

 2.6c)  𝑓
𝑖−

1

2

+ = 𝜔5 [
1

2
𝑓+(𝑈𝑖−1) + 

1

2
𝑓+(𝑈𝑖)] + 𝜔6 [−

1

2
𝑓+(𝑈𝑖−2) +

3

2
𝑓+(𝑈𝑖−1)] 

 

 2.6d)  𝑓
𝑖−

1

2

− = 𝜔7 [
3

2
𝑓−(𝑈𝑖) − 

1

2
𝑓−(𝑈𝑖+1)] + 𝜔8 [

1

2
𝑓−(𝑈𝑖−1) +

1

2
𝑓−(𝑈𝑖)] 

 

We can now see all four two-point stencils from (2.4) with non-linear weights 𝜔𝑛 , where each flux value 

is some convex combination of two separate stencils spanning a total of three points each. Without loss 

of generality, the determination of the nonlinear weights 𝜔1 and 𝜔2 are given below, where there is a 

straightforward extension to the other six values. 

 

 2.7a)  𝜔1 =
𝛼1

𝛼1+𝛼2
     𝜔2 =

𝛼2

𝛼1+𝛼2
 

 

 2.7b)  𝛼1 =
2
3⁄

𝜖+𝛽1
2     𝛼2 =

1
3⁄

𝜖+𝛽2
2 

 

 2.7c)  𝛽1 = (𝑓
+(𝑈𝑖+1) − 𝑓

+(𝑈𝑖))
2   𝛽2 = (𝑓

+(𝑈𝑖) − 𝑓
+(𝑈𝑖−1))

2 

 

 2.7d)  𝜖 = 10−6 

 

The final equation above (2.7d) is implanted in (2.7b) in order to avoid an invalid expression for the 

denominator. Now we can sum together our flux values from (2.6a-d) to get 

 

 2.8a)  𝑓
𝑖+

1

2

= 𝑓
𝑖+

1

2

+ + 𝑓
𝑖+

1

2

−  
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 2.8b)  𝑓
𝑖−

1

2

= 𝑓
𝑖−

1

2

+ + 𝑓
𝑖−

1

2

−  

 

An approximation to the conservative flux difference is now possible, taken as the difference between 

these flux values at inter-nodal locations divided by their separation, in much the same way as the finite 

difference scheme presented in (1.26), but this time the separation is spanned by a single 𝑑𝑥. 

 

 2.9)  𝑓(𝑈𝑖)𝑥 =
1

𝑑𝑥
(𝑓

𝑖+
1

2

− 𝑓
𝑖−

1

2

) 

 

This is the penultimate step in our formulation. Refreshing ourselves of the main focus of attention from 

earlier (1.1), written slightly differently in a fluxing model, we finally have 

 

 2.10)  𝑈(𝑥𝑖)𝑡 = −
1

𝑑𝑥
(𝑓

𝑖+
1

2

− 𝑓
𝑖−

1

2

) + 𝜙𝑖 

 

or written in a more discrete finite difference framework 

 

 2.11)  
𝑈𝑖
𝑛+1−𝑈𝑖

𝑛

𝑑𝑡
= −

1

𝑑𝑥
(𝑓

𝑖+
1

2

− 𝑓
𝑖−

1

2

) + 𝜙𝑖 

 

with an explicit formulation for the next time step value 

 

 2.12)  𝑈𝑖
𝑛+1 = −

𝑑𝑡

𝑑𝑥
((𝑓

𝑖+
1

2

− 𝑓
𝑖−

1

2

) + 𝜙𝑖) + 𝑈𝑖
𝑛 

 

When there are explicitly defined values at the boundary for the function 𝑈(𝑥 = 𝑎, 𝑥 = 𝑏) given by the 

specifications of each partial differential equation, the full domain over which our finite difference 

scheme is concerned is actually the set {𝑥2, 𝑥3, … , 𝑥𝑁−2, 𝑥𝑁−1}, as the values at the end point are held 

fixed and do not evolve in time, removing {𝑥1} and {𝑥𝑁} from consideration. In order to implement the 

full WENO scheme at these new endpoints (namely {𝑥1} and {𝑥𝑁−1}) we still need two points on either 

side, as shown in (Figure 5). This is accomplished by adding ghost points values, established with the 

same regularity at a separation distance 𝑑𝑥, indicated in (Figure 5) by 𝐺𝑘. These values are determined  
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[FIGURE 6] 

WENO-3 discretization globally and locally about the point 𝑥𝑖. The conservative 

flux difference is the sum of the inflow and outflow at the inter-nodal point 

𝑥
𝑖+
1

2

 minus the sum of the inflow and outflow at the inter-nodal point 𝑥
𝑖−
1

2

, 

diagrammatically displayed in (Figure 1), divided by their separation, which 

corresponds to (2.9). On the interval [𝑎, 𝑏] spanned by the points {𝑥1 = 𝑎,

𝑥2, … , 𝑥𝑁−1, 𝑥𝑁 = 𝑏}, there is the requirement to append to either end so-

called ghost point values, denoted above by 𝐺𝑘.  

 

by the steady state solution to the function 𝑈(𝑥) and are used as a means to maintain consistency with 

respect to the global utilization of the stencils outlined in (2.4). For particular examples where there is 

no fixed value for the boundary (see example 1) then a total of four ghost points are needed, two on 

either end of the domain. A single iteration is counted when an entire progression of all non-ghost and 

non-boundary (when fixed) values are made onto the next time step. 

 There is then a straightforward extension to functions of two variables, where the same 

adaptive stencil technique is applied to estimate flux values at inter-nodal points along each dimension 

independently, according to the two functions of 𝑓(𝑥) and 𝑔(𝑦) which define this fluxing. Given the two 

dimensional analogue to (1.1)  

 

 2.13)  𝑈𝑡 + 𝑓(𝑈)𝑥 + 𝑔(𝑈)𝑦 = 𝜙 

 

there is a similar modification to (1.40) 

 

2.14)  
𝑈𝑖,𝑗
𝑛+1−𝑈𝑖,𝑗

𝑛

𝑑𝑡
= −

1

𝑑𝑥
(𝑓

𝑖+
1

2

− 𝑓
𝑖−

1

2

) −
1

𝑑𝑦
(𝑔

𝑖+
1

2

− 𝑔
𝑖−

1

2

) + 𝜙𝑖,𝑗 

𝑎 𝑥2 𝑏 𝑥𝑁−1 … 

 

… 

 

𝑥𝑖 
𝑥
𝑖+
1
2

 𝑥
𝑖−
1
2

 

𝑓
𝑖−
1
2

+  𝑓
𝑖−
1
2

−  𝑓
𝑖+
1
2

+  𝑓
𝑖+
1
2

−  

𝐺0 𝐺𝑁+1 
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where a different flux splitting calculation is made for the 𝑔 function, this time given a subscript to avoid 

ambiguity 

 

 2.15a)  {
𝑔+(𝑈𝑖) =

1

2
(𝑔(𝑈𝑖) + 𝛼𝑦𝑈𝑖)

𝑔−(𝑈𝑖) =
1

2
(𝑔(𝑈𝑖) − 𝛼𝑦𝑈𝑖)

 

 

2.15b)  𝛼𝑦 = 𝑚𝑎𝑥|𝑔′(𝑈)𝑦|   

 

and the rest of (2.6) to (2.9) can be followed without confusion for 𝑔(𝑦). 

 We end this section with a compact notation for the WENO methodology which will be used in 

the following sections when developing two separate total variation diminishing schemes. The right 

hand side of (2.14) can be subsumed within a single function and written as 

 

 2.16a)  𝐿(𝑈𝑖−𝑟,𝑗, … , 𝑈𝑖+𝑠,𝑗: 𝑈𝑖,𝑗: 𝑈𝑖,𝑗−𝑟, … , 𝑈𝑖,𝑗+𝑠) = 

−
1

𝑑𝑥
(𝑓

𝑖+
1
2
− 𝑓

𝑖−
1
2
) −

1

𝑑𝑦
(𝑔

𝑖+
1
2
− 𝑔

𝑖−
1
2
) + 𝜙𝑖,𝑗 

 

 2.16b)  
𝑈𝑖,𝑗
𝑛+1−𝑈𝑖,𝑗

𝑛

𝑑𝑡
= 𝐿(𝑈𝑖−𝑟,𝑗, … , 𝑈𝑖+𝑠,𝑗: 𝑈𝑖,𝑗: 𝑈𝑖,𝑗−𝑟, … , 𝑈𝑖,𝑗+𝑠) 

 

 2.16c)  𝑖 = 1,… ,𝑁 ∶ 𝑗 = 1,… ,𝑀 

 

In (2.16a) the values for 𝑟 and 𝑠 indicate the rightmost and leftmost extension used in each stencil (i.e. 

each evaluation of the point 𝑥𝑖 includes two points to the right and two points to the left), where the 

subscripts 𝑖 and 𝑗 indicate each of the two variables in (2.13). To ensure third order accuracy, we require 

at least the following holds, namely that for 

 

 2.17)  𝑟 = 𝑠 = 2     𝑘 = 𝑟 + 𝑠 − 1 

 

where 𝑘 denotes the degree of the specific finite difference scheme, of which here is presented a 3rd 

order scheme, apparent from (Figure 4).   
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TOTAL VARIATION DIMINISHING RUNGE-KUTTA 

 

 

Computational schemes which propose a criterion for convergence to be the attainment of successive 

iterations whose variations fall below some predetermined threshold are called total variation 

diminishing schemes [13]. These types of schemes analyze the entire functional domain and compare 

the most recent iteration to the previous iteration, in compliance with the following 

 

 2.18)  
1

𝑁
∑ |𝑈𝑖

𝑛 − 𝑈𝑖
𝑛+1|𝑁

𝑖=1 ≤ 𝛿    𝛿 = 10−11 

 

where 𝑛 is in reference to the 𝑛th time step, and the value in (2.18) is synonymous with the 𝐿1 

convergence error, which is the sum of the differences between the two iterations. Such a convergence 

criterion is impossible in the presence of oscillatory phenomena, where continual fluctuations will cause 

a ceaseless back-and-forth between each subsequent iteration. The successful implementation of this 

type of scheme is clear evidence that such oscillations (namely from the Gibbs phenomenon) are heavily 

minimized, directly proportional to the size of the variation limit, given by 𝛿, and that global and uniform 

convergence has been achieved.  

For the third-order Runge-Kutta scheme there are two successive refinements of the value 

𝑈(𝑥𝑖, 𝑦𝑗)
(1) and 𝑈(𝑥𝑖 , 𝑦𝑗)

(2) leading to the development of a third and final formulation of 𝑈(𝑥𝑖 , 𝑦𝑗)
𝑛+1 

as outlined below, fully expanded in multivariate notation 

 

2.19a)   𝑈(𝑥𝑖 , 𝑦𝑗)
(1)
= 

𝑈(𝑥𝑖, 𝑦𝑗)
𝑛
+ 𝑑𝑡 ∙ 𝐿(𝑈(𝑥𝑖−𝑟, 𝑦𝑗)

𝑛
, … , 𝑈(𝑥𝑖+𝑠, 𝑦𝑗)

𝑛
: 𝑈(𝑥𝑖 , 𝑦𝑗)

𝑛
: 𝑈(𝑥𝑖 , 𝑦𝑗−𝑟)

𝑛
, … , 𝑈(𝑥𝑖 , 𝑦𝑗+𝑠)

𝑛
) 

 

2.19b)  𝑈(𝑥𝑖, 𝑦𝑗)
(2)
= 

3

4
𝑈(𝑥𝑖 , 𝑦𝑗)

𝑛

+
1

4
𝑈(𝑥𝑖, 𝑦𝑗)

(1) +
1

4
𝑑𝑡

∙ 𝐿 (𝑈(𝑥𝑖−𝑟, 𝑦𝑗)
(1)
, … , 𝑈(𝑥𝑖+𝑠, 𝑦𝑗)

(1)
: 𝑈(𝑥𝑖, 𝑦𝑗)

(1)
: 𝑈(𝑥𝑖 , 𝑦𝑗−𝑟)

(1)
, … , 𝑈(𝑥𝑖, 𝑦𝑗+𝑠)

(1)
) 
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2.19c)  𝑈(𝑥𝑖, 𝑦𝑗)
𝑛+1

= 

1

3
𝑈(𝑥𝑖 , 𝑦𝑗)

𝑛

+
2

3
𝑈(𝑥𝑖, 𝑦𝑗)

(2) +
2

3
𝑑𝑡

∙ 𝐿 (𝑈(𝑥𝑖−𝑟 , 𝑦𝑗)
(2)
, … , 𝑈(𝑥𝑖+𝑠, 𝑦𝑗)

(2)
: 𝑈(𝑥𝑖, 𝑦𝑗)

(2)
: 𝑈(𝑥𝑖, 𝑦𝑗−𝑟)

(2)
, … , 𝑈(𝑥𝑖 , 𝑦𝑗+𝑠)

(2)
) 

 

 2.19d)  𝛼
𝑑𝑡

𝑑𝑥
≤ 𝐶𝐹𝐿 = 0.5    𝑑𝑡 =

1

2𝛼
𝑑𝑥  

 

2.19e)  𝛼 = 𝑚𝑎𝑥 (|𝑓′(𝑈)|𝑥  𝑜𝑟 |𝑔′(𝑈)𝑦|) 

 

Written in more succinct notation 

 

 2.20a)  𝑈(1) = 𝑈𝑛 + 𝑑𝑡 ∙ 𝐿(𝑈𝑛) 

 

 2.20b)  𝑈(2) =
3

4
𝑈𝑛 +

1

4
𝑈(1) +

1

4
𝑑𝑡 ∙ 𝐿(𝑈(1)) 

 

 2.20c)  𝑈𝑛+1 =
1

3
𝑈𝑛 +

2

3
𝑈(2) +

2

3
𝑑𝑡 ∙ 𝐿(𝑈(2)) 

 

In the literature [9] the generalized left hand side of (2.20a-c) 𝑈𝑘 is often written as �̅�𝑘 in order to 

concretize the fact that these values are mere continual approximations, but this has been omitted here 

to reduce the avalanche of notation to a deluge instead. In the case of scalar hyperbolic conservation 

laws involving a source term that is a function of time (namely for partial differential equations for 

which a steady state solution is not possible [of which only example one is of this type]), the function 𝐿 

is a function of 𝑥, 𝑦, and 𝑡, requiring modifications to (2.20a-c) in the following manner 

 

 2.21a)  𝑈(1) = 𝑈𝑛 + 𝑑𝑡 ∙ 𝐿(𝑈𝑛, 𝑡𝑛) 

 

 2.21b)  𝑈(2) =
3

4
𝑈𝑛 +

1

4
𝑈(1) +

1

4
𝑑𝑡 ∙ 𝐿(𝑈(1), 𝑡𝑛 + 𝑑𝑡) 

 

 2.21c)  𝑈𝑛+1 =
1

3
𝑈𝑛 +

2

3
𝑈(2) +

2

3
𝑑𝑡 ∙ 𝐿(𝑈(2), 𝑡𝑛 +

1

2
𝑑𝑡) 
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To reiterate, the parenthesized superscripts are in reference to the intermediate refinements of the 

approximation to 𝑈𝑛+1, which are then used in a linear combination with the original value of 𝑈𝑛 to 

approximate the next time step. Also in the above formulations (2.20/2.21), reference to the specific 

point locations are omitted for the sake of brevity, however they are fully detailed in (2.19). Now it is 

this scheme that will be used in the time marching approach that will be used as a comparison to the 

fast sweeping Gauss-Seidel Successive Over-Relaxation scheme. 

 

 

FAST-SWEEPING SUCCESSIVE OVER-RELAXATION GAUSS-SEIDEL 

 

 

In much the same fashion as the previous formulation, the fast-sweeping Gauss-Seidel scheme is 

defined by two consecutive refinements of the approximation to 𝑈(𝑥𝑖 , 𝑦𝑗)
𝑛+1 ending in a third and final 

approximation which interweaves the latest refinement 𝑈(𝑥𝑖 , 𝑦𝑗)
(2). There are three key additional 

concepts which this scheme employs, namely the incorporation of the most up-to-date values possible, 

the weighted averaging of this latest information with the current value, and the utilization of 

alternating sweeping directions. On the first of these regarding the most recent data values, this means 

that as we continue through the domain, whenever possible we make use of the latest iterated value, 

which may be from the currently-being-calculated time step (i.e. the 𝑛 + 1th time step in the calculation 

of the 𝑛 + 1th time step at a different point, see [Figure 6]).  

 

 2.22a)  𝑈𝑖,𝑗
(1)
= 𝑈𝑖,𝑗

𝑛 +
𝛾

𝛼𝑥
𝑑𝑥
+
𝛼𝑦

𝑑𝑦

∙ 𝐿(𝑈𝑖−𝑟,𝑗
∗ , … , 𝑈𝑖+𝑠,𝑗

∗ : 𝑈𝑖,𝑗
𝑛 : 𝑈𝑖,𝑗−𝑟

∗ , … , 𝑈𝑖,𝑗+𝑟
∗ ) 

 

 2.22b)  𝑈𝑖,𝑗
(2)
= 𝑈𝑖,𝑗

(1)
+
1

4

𝛾
𝛼𝑥
𝑑𝑥
+
𝛼𝑦

𝑑𝑦

∙ 𝐿 (𝑈𝑖−𝑟,𝑗
∗∗ , … , 𝑈𝑖+𝑠,𝑗

∗∗ : 𝑈𝑖,𝑗
(1)
: 𝑈𝑖,𝑗−𝑟

∗∗ , … , 𝑈𝑖,𝑗+𝑟
∗∗ ) 

 

 2.22c)  𝑈𝑖,𝑗
𝑛+1 = 𝑈𝑖,𝑗

(2)
+
2

3

𝛾
𝛼𝑥
𝑑𝑥
+
𝛼𝑦

𝑑𝑦

∙ 𝐿 (𝑈𝑖−𝑟,𝑗
∗∗∗ , … , 𝑈𝑖+𝑠,𝑗

∗∗∗ : 𝑈𝑖,𝑗
(2)
: 𝑈𝑖,𝑗−𝑟

∗∗∗ , … , 𝑈𝑖,𝑗+𝑟
∗∗∗ ) 

 

To clarify, the constant 𝛾 is the same value obtained from (2.19) which is the CFL condition, here set to 

0.5. Also, the asterisk superscripts for the function 𝑈 are meant to indicate the “to be determined” 

nature of these values, in the sense that when unavailable, the previous refinement’s or time step’s 
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value is to be used. However if a newer value has been calculated and is available within the current 

stencil consideration, then it is used instead, coming from either the next refinement or time step. 

 

 2.23a)  𝑈∗ = {
𝑈𝑖,𝑗
𝑛  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑈𝑖,𝑗
(1)
 𝑤ℎ𝑒𝑛 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

 

 

 2.23b)  𝑈∗∗ = {
𝑈𝑖,𝑗
(1)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑈𝑖,𝑗
(2)
 𝑤ℎ𝑒𝑛 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

 

 

 2.23c)  𝑈∗∗∗ = {
𝑈𝑖,𝑗
(2)
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑈𝑖,𝑗
𝑛+1 𝑤ℎ𝑒𝑛 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

 

 

As evidenced in (Figure 6), when there is the availability of new information, changes can be made to 

the existing stencil parameters such that this most recent data occupies the place of now essentially 

overwritten data. In contrast, the Runge-Kutta scheme previously outlined will perform an un-adjusted 

evolution of all points within a domain, sticking to the same stencil which takes only data from a 

predetermined time step or refinement. From (2.23) it is clear that there are two distinct values which 

can be used in calculating either 𝑈(1), 𝑈(2), or 𝑈𝑛+1, and therefore any particular 𝑈∗, 𝑈∗∗, or 𝑈∗∗∗ is to 

be determined dynamically, based upon what is currently available. The convention in (2.23) is that the 

top value is the default value, and the bottom value is to be used when it first becomes available, exactly 

as what is diagrammatically implied in (Figure 6).  

 On the second of the aforementioned three key components, the concept of incorporating the 

newest available information is further developed in the Gauss-Seidel framework by also allowing for a 

weighted average of current and previous values to be calculated. This weighted average is moderated 

by a relaxation parameter 𝜔 which can be tailored to fine tune computational performance, an 

important aspect that will receive extensive attention in later examples. 

 

 2.24)  𝑈(𝑘) = 𝜔�̅�(𝑘) + (1 − 𝜔)𝑈(𝑘−1) 

 

 

 

 



23 
 

Time-step                Iteration 1 

𝑛 + 1 

 

 

 

 

 

𝑛 

 

 

 

Time-step                Iteration 2 

𝑛 + 1 

 

 

 

 

 

𝑛 

 

 

 

Time-step                Iteration 3 

𝑛 + 1 

 

 

 

 

 

𝑛 

 

 

𝑥𝑖 

𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 𝑥𝑖+3 

𝑥𝑖+1 𝑥𝑖 

𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 𝑥𝑖+3 𝑥𝑖+4 

𝑥𝑖+2 𝑥𝑖+1 𝑥𝑖 
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[FIGURE 7] 

Three successive iterations progressing the points 𝑥𝑖, 𝑥𝑖+1, and 𝑥𝑖+2 from time 

step 𝑛 to 𝑛 + 1. This is an oversimplified diagrammatic showcasing of the 

discretionary nature of the Gauss-Seidel scheme, where once a new value has 

been calculated, it can be substituted in the place of the previous time step’s 

(or previous refinement’s) value, allowing the parameters of the stencil to 

adjust itself in favor of incorporating the most recently available values. 

 

In a generalized form (2.24) displays how either a refinement or a next time step value for some 𝑈(𝑘) 

can be obtained through a process of averaging the most recent Gauss-Seidel iteration �̅�(𝑘) (given a bar 

to indicate its stature as an intermediate value) with the previously determined 𝑈(𝑘−1), based upon the 

value of the relaxation parameter 𝜔. We then extend the definition from (2.22) to include this 

formulation involving such a relaxation parameter and provide a full algorithmic scheme 

 

2.25a)  {
�̅�𝑖,𝑗
(1)
= 𝑈𝑖,𝑗

𝑛 +
𝛾

𝛼𝑥
𝑑𝑥
+
𝛼𝑦

𝑑𝑦

∙ 𝐿(𝑈𝑖−𝑟,𝑗
∗ , … , 𝑈𝑖+𝑠,𝑗

∗ : 𝑈𝑖,𝑗
𝑛 : 𝑈𝑖,𝑗−𝑟

∗ , … , 𝑈𝑖,𝑗+𝑟
∗ )

𝑈𝑖,𝑗
(1)
= 𝜔�̅�𝑖,𝑗

(1)
+ (1 − 𝜔)𝑈𝑖,𝑗

𝑛
 

 

2.25b)  {
�̅�𝑖,𝑗
(2)
= 𝑈𝑖,𝑗

(1)
+
1

4

𝛾
𝛼𝑥
𝑑𝑥
+
𝛼𝑦

𝑑𝑦

∙ 𝐿 (𝑈𝑖−𝑟,𝑗
∗∗ , … , 𝑈𝑖+𝑠,𝑗

∗∗ : 𝑈𝑖,𝑗
(1)
: 𝑈𝑖,𝑗−𝑟

∗∗ , … , 𝑈𝑖,𝑗+𝑟
∗∗ )

𝑈𝑖,𝑗
(2)
= 𝜔�̅�𝑖,𝑗

(2)
+ (1 − 𝜔)𝑈𝑖,𝑗

(1)
 

 

2.25c)  {
�̅�𝑖,𝑗
𝑛+1 = 𝑈𝑖,𝑗

(2)
+
2

3

𝛾
𝛼𝑥
𝑑𝑥
+
𝛼𝑦

𝑑𝑦

∙ 𝐿 (𝑈𝑖−𝑟,𝑗
∗∗∗ , … , 𝑈𝑖+𝑠,𝑗

∗∗∗ : 𝑈𝑖,𝑗
(2)
: 𝑈𝑖,𝑗−𝑟

∗∗∗ , … , 𝑈𝑖,𝑗+𝑟
∗∗∗ )

𝑈𝑖,𝑗
𝑛+1 = 𝜔�̅�𝑖,𝑗

𝑛+1 + (1 − 𝜔)𝑈𝑖,𝑗
(2)

 

 

The third and final key component to the fast sweeping Gauss-Seidel scheme is the utilization of 

alternating sweeping directions along which the functional domain is scanned. For more standard 

implementations of finite difference schemes in general and for the the time-marching Runge-Kutta 

scheme in particular the convention is to start each iteration as a scan from one side to the other 

without adjustment, according to (2.16b). This is referred to as a time marching method which, like a 

typewriter, operates with a singular logic. By allowing for alternating sweeping directions, however, 

convergence to steady state solutions can be significantly sped up, and in some cases baseline 

convergence is achieved when a time marching method would result in divergence. For the two 

dimensional case there are four discrete possible sweeping directions, given below 
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 2.26a)  𝑥 ∈ {𝑥1 = 𝑎, 𝑥2, 𝑥3, … , 𝑥𝑖, … , 𝑥𝑁−2, 𝑥𝑁−1, 𝑥𝑁 = 𝑏} 

 

 2.26b)  𝑦 ∈ {𝑦1 = 𝑎, 𝑦2, 𝑦3, … , 𝑦𝑗 , … , 𝑦𝑀−2, 𝑦𝑀−1, 𝑦𝑀 = 𝑏} 

 

 2.26c)  1: 𝑖 = 1:𝑁,     𝑗 = 1:𝑀   

 

2: 𝑖 = 𝑁: 1,     𝑗 = 1:𝑀 

 

   3: 𝑖 = 𝑁: 1,     𝑗 = 𝑀: 1   

 

4: 𝑖 = 1:𝑁,     𝑗 = 𝑀: 1 

 

We can now revisit (Figure 6) and appreciate the fact that the diagram is a one dimensional depiction of 

the first type of sweep given in (2.26c), namely a left-to-right stencil progression along the domain. If 

this same figure were to showcase the second sweeping direction, a mirror image can be conjured up 

where points from the right are incorporated into the stencil parameters as it moves to the left. It 

should be noted that these alternating sweeping directions are strictly implemented per iteration, 

meaning that one set iteration is performed using one set sweeping direction, and only once every value 

has been progressed to the next time step will an alternation of sweeping direction occur.  
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3. NUMERICAL EXAMPLES 

 

 

NOTES ON THE NUMERICAL EXAMPLES 

 

 

For the implementation and analysis of the WENO scheme, there are several specifications to be listed 

here. Each example’s approximation to the steady state solution is refined until successive iterations 

exhibit variations below a set threshold, as mentioned earlier and given by (2.18), with the exception of 

example 1 where the solution is progressed until 𝑡 = 1, give-or-take some residual based upon the 

choice of 𝑑𝑡. For example 1, a centered difference formulation (1.26) is compared with the time-

marching Runge-Kutta scheme outlined in (2.21), which is the WENO framework which includes a 

treatment for time-dependent source terms. For all examples, the ghost points along the domain are a 

fixed distance of 𝑑𝑥 to the right and left of the endpoints [𝑎, 𝑏], and these values are set using the 

steady state solution values. The accuracy in terms of the 𝐿1 and 𝐿∞ norms are determined respectively 

 

 3.1a)  𝐿1 =
1

𝑁
∑ |�̅�𝑖

𝑚 − 𝑈𝑖
𝑚|𝑁

𝑖=1  

 

 3.1b)  𝐿∞ = 𝑚𝑎𝑥|�̅�𝑖
𝑚 − 𝑈𝑖

𝑚| 

 

where 𝑈 ̅is the approximate solution (given a bar to avoid ambiguity), 𝑈 is the exact solution, and the 

superscript versions �̅�𝑚 and 𝑈𝑚 are to denote the fact that these are evaluations that do not consider 

some local domain surrounding the location of discontinuity (i.e. �̅�𝑚 = �̅� minus some fixed subset of 

points), in order for the accuracy of the approximation to be measured strictly in the smooth regions of 

approximation (Figure 9). Meaning if the location of discontinuity were given by 𝑐, then 

 

 3.2a)  �̅�𝑚 = {
0     𝑖𝑓 |𝑥𝑖 − 𝑐| ≤ 0.1

𝑈 ̅             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

 

 3.2b)  𝑈𝑚 = {
0     𝑖𝑓 |𝑥𝑖 − 𝑐| ≤ 0.1
𝑈             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
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Thus for all point values within this range of the discontinuity, the approximation and the exact solution 

are zeroed out, in order for the 𝐿1 and 𝐿∞ errors to be strict measurements of the convergence within 

the smooth regions of the domain.  

 The order of accuracy for both the 𝐿1 and 𝐿∞ norms is a relative value, which is why in the 

tabulations to follow the first row is left blank, and is defined below 

 

 3.3)  𝑜𝑟𝑑𝑒𝑟𝑘 =
ln (

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐿𝑘 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝐿𝑘
)

ln (2)
 

 

where 𝑘 is in reference to either the order of the 𝐿1 or 𝐿∞ norms respectively. The designation of 

‘previous’ and ‘current’ is meant to denote the relative discretization used, which should be made clear 

from the given tables. 

 The iteration optimization percentage is a ratio of the quickest and slowest convergences across 

different extrapolation factors for each discretization, and this value is obtained by 

 

 3.4)  Iteration reduction % = (1 − 
𝑚𝑖𝑛

𝑚𝑎𝑥
) × 100% 

 

 where the min value is taken when 𝜔 = 1. Finally, in calculating the residual history throughout 

the approximation process for each example, the residual value at the 𝑛th iteration is determined by 

 

 3.5)  �̅�𝑟𝑒𝑠
𝑛 = 𝑚𝑎𝑥|�̅�𝑛 − �̅�𝑛−1| 

 

which is to say the residual is measured as the largest deviation from the previous approximation to the 

most current. This process clearly ends when the variations are less than 10−11 in magnitude, in keeping 

with (2.18). 

 

 

CFL CONDITIONS 

 

 

Several of the references [18, 19] discuss how the WENO framework allows for accurate approximations 

even when utilizing relatively large CFL conditions (greater than 0.5 in general, specifically larger than 1).  
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[Figure 8] 

Appadu, A.R. and Peer, A. A. I. “Optimized Weighted Essentially Non-Oscillatory 
Third-Order Schemes for Hyperbolic Conservation Laws.” Journal of Applied 
Mathematics, Article ID 428681, 2013, page 11. The original reference and 
reproduction of the approximations from [19], where the lowest two images 
are the approximations at slightly larger CFL conditions, just as divergence 
results. These issues clearly arise at the locations of discontinuity.  

Problem III 
 

𝑈𝑡 + (
1

2
𝑈2)

𝑥
= 0 

𝑈(𝑥, 0) = {1             𝑓𝑜𝑟 |𝑥| <
1

3
−1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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examining the iteration rates of time-marching and fast-sweeping algorithms, with additional 

refinements made to the Gauss-Seidel extrapolation factor. In Example 6 the CFL condition is increased 

to show further optimizations, and is then set too large to demonstrate how even a simple example can 

disintegrate at too large a CFL condition. In a sense you are rushing the solution more and more by 

demanding larger and larger CFL values.  

 

 

SHOCK POST-PROCESSING 

 

 

A third-order accurate approximation is only so good, and at locations of discontinuity there is a sizeable 

disparity between the exact solution and the estimate [7, 13]. So sizeable that it is standard practice to 

take error measurements from the smooth regions of the solution alone, disregarding a sub-interval 

surrounding the discontinuity where accuracy is not guaranteed. In an intuitive sense, it is precisely 

around discontinuities that we begin to limit how much information we have available to make 

approximations, for in these areas we have at least one stencil that is weighted closer to zero (the 

stencil bridging the discontinuity), and we are thus relying on less information, hence a lower order 

approximation. However, once steady state has been reached, I noticed that the sum of the smoothness 

indicators (2.7c) gave a very good approximation to areas of discontinuities, and in cases of a strong 

shock (focused on a single point), estimations to the exact location can be made. Given this information, 

we can enforce a left- or right-sided limit to either side of the shock point, and thus give better 

resolution around the discontinuity location. Therefore instead of removing an entire section of the 

domain (Figure 9), we can remove just a single point, the discontinuity itself, and linearly approximate 

(Example 2) and non-linearly second-order centered difference approximate (Example 3) the 

discontinuity region. The error in strictly the smooth regions is still superior (i.e. smaller), but 

improvements to the discontinuity region can be made with this post-processing approach. In (Table 1) 

the only excluded point is the estimated point of discontinuity, and so the error measurements are 

essentially across the entire domain (notice how much larger they are relative to the Table 1 values 

when the smooth regions alone are considered). 
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[FIGURE 9] 

 

 

 
[FIGURE 10] 

Example 2 with the excluded region (Figure 9) and the singular point of 
discontinuity given the pre- and post-processing procedure (Figure 10). 
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N 𝐿1 error  𝐿1 error Post 
Processing 

40 0.0052 4.6372e-05 

80 0.0030 2.9826e-05 

160 0.0016 3.8209e-05 

320 8.5088e-04 1.8379e-05 

640 4.3751e-04 8.0143e-06 

 

[TABLE 1] 

A comparison of the 𝐿1-𝑛𝑜𝑟𝑚 at different discretization and CFL settings for 

both the time-marching Runge-Kutta WENO and centered difference schemes 

for Example 2, where the error is measured across the entire domain, excluding 

the singular discontinuous point. 

 

(Table 1) shows the potential for a post-processing scheme to reduce the error in the regions 

surrounding discontinuities, and that error measurements in the smooth region can be considered up 

until the discontinuity itself, assuming a strong shock is present. With just a linear interpolation for the 

neighboring points (here taken to be five points on either side of the estimated discontinuity), a 

reduction of two orders of magnitude is possible, with clearly room for further improvement.  In 

contrast, all later examples will take error measurements in the smooth regions of the solution alone. 

In real world scenarios such adherence to the piece-wise nature of the solution may be 

unrealistic, but in simple cases where assumptions of linearity can be made and the presence of strong 

shocks is known, such post-processing can boost accuracy in the discontinuous region. The smoothness 

indicator sum is just that, from (2.7c). 

 

 3.6a)  𝐵𝑛 = ∑ ∑ 𝛽𝑘
8
𝑘=1

𝑁
𝑖=1  

 

 3.6b)  𝑖𝑓 𝑚𝑎𝑥(𝐵𝑛) = 𝐵𝑖
𝑛 then estimated discontinuity at 𝑥𝑖 

 

namely a double sum across all points and all smoothness indicator values. The maximum values of this 

crude function (XXX) are actually quite accurate at defining either a range or a point to the location of 

functional discontinuity. Once steady state has been reached, this value settles on the discontinuity 

region, and a post-processing procedure can be applied.  
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SCALAR HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION WITH TIME-DEPENDENT SOURCE TERM 

 

 

Example 1: 

 3.7a)  𝑈𝑡 + (
1

2
𝑈2)

𝑥
= 𝑐𝑜𝑠 (𝑥 + 𝑡)[1 + 𝑠𝑖𝑛 (𝑥 + 𝑡)]  0 ≤ 𝑥 ≤ 2𝜋 

 

Initial conditions 

 3.7b)  𝑈(𝑥, 0) = 𝑠𝑖𝑛 (𝑥)     

 

Steady state 

 3.7c)  𝑈(𝑥, 𝑡) = 𝑠𝑖𝑛 (𝑥 + 𝑡) 

 

 

1-DIMENSIONAL NONLINEAR BURGER’S EQUATIONS WITH SOURCE TERMS 

 

 

Example 2: 

 3.8a)  𝑈𝑡 − (
1

2
𝑈2)

𝑥
= 𝑈     0 ≤ 𝑥 ≤ 1 

 

Boundary conditions 

 3.8b)  𝑈(0, 𝑡) =
3

4
  𝑈(1, 𝑡) = −

1

2
   

 

Initial conditions 

 3.8c)   𝑈(𝑥, 0) = {

3

4
,           𝑥 <

1

2

−
1

2
,       𝑥 ≥

1

2

 

 

Steady state solution 

 3.8d)  𝑈(𝑥) = {

3

4
− 𝑥,         𝑥 < 0.625

−𝑥 +
1

2
,     𝑥 ≥ 0.625
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Example 3: 

 3.9a)  𝑈𝑡 + (
1

2
𝑈2)

𝑥
= 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥)    0 ≤ 𝑥 ≤ 𝜋 

 

Boundary conditions 

 3.9b)  𝑈(0, 𝑡) = 0  𝑈(𝜋, 𝑡) = 0   

 

Initial conditions 

 3.9c)  𝑈(𝑥, 0) =
1

2
𝑠𝑖𝑛 (𝑥) 

 

Steady state 

 3.9d)  𝑈(𝑥) = {
𝑠𝑖𝑛 (𝑥),          0 ≤ 𝑥 <

2𝜋

3

−𝑠𝑖𝑛 (𝑥),     
2𝜋

3
≤ 𝑥 ≤ 𝜋

 

 

 

2-DIMENSIONAL NONLINEAR BURGER’S EQUATIONS WITHOUT AND WITH SOURCE TERMS 

 

 

Example 4: 

 3.10a)  𝑈𝑡 + (
1

2
𝑈2)

𝑥
+ 𝑈𝑦 = 0     0 ≤ 𝑥, 𝑦 ≤ 1 

 

Boundary conditions 

 3.10b)  𝑈(𝑥, 𝑦) = {

3

2
,                 𝑥 = 0

−
5

2
𝑥 +

3

2
,   𝑦 = 0

−1,               𝑥 = 1

    

 

Initial conditions 

 3.10c)  𝑈(𝑥, 𝑦, 0) = −
5

2
𝑥 +

3

2
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Steady state solution 

 3.10d)  𝑈(𝑥, 𝑦) =

{
 
 

 
 
3

2
,                                             𝑓𝑜𝑟 𝑥, 𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙1 𝑎𝑛𝑑 𝑙3

−1,                                         𝑓𝑜𝑟 𝑥, 𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙2 𝑎𝑛𝑑 𝑙3

−
5

2
(
3

5
+

2

5
(𝑥− 

3

5
)

2

5
−𝑦

) +
3

2
,        𝑓𝑜𝑟 𝑥, 𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙1 𝑎𝑛𝑑 𝑙2

   

 

Example 5: 

 3.11a)  𝑈𝑡 + (
𝑈2

2√2
)
𝑥
+ (

𝑈2

2√2
)
𝑦
= −𝑈𝜋cos (𝜋

𝑥+𝑦

√2
)  0 ≤ 𝑥, 𝑦 ≤

1

√2
 

 

Boundary conditions 

 3.11b)  𝑈(𝑥, 𝑦, 𝑡) =

{
  
 

  
 1 − 𝑠𝑖𝑛 (𝜋

𝑦

√2
) ,         𝑥 = 0,

𝑦

√2
≤ 𝑥𝑠

1 − 𝑠𝑖𝑛 (𝜋
𝑥

√2
) ,         𝑦 = 0,

𝑥

√2
≤ 𝑥𝑠

−
1

10
− 𝑠𝑖𝑛 (𝜋(

1

2
+

𝑦

√2
))

−
1

10
− 𝑠𝑖𝑛 (𝜋(

1

2
+

𝑥

√2
))
,     𝑥, 𝑦 =

1

√2

 

 

 3.11c)  𝑥𝑠 = 0.1486 

 

Initial conditions 

 3.11d)  𝑈(𝑥, 𝑦, 0) = {
1,                0 ≤

𝑥+𝑦

√2
≤

1

2

−
1

10
,           

1

2
<

𝑥+𝑦

√2
≤ 1

 

 

Steady state solution 

 3.11e)  𝑈(𝑥, 𝑦) = {
1 − 𝑠𝑖𝑛 (𝜋

𝑥+𝑦

√2
) ,             0 ≤

𝑥+𝑦

√2
≤ 𝑥𝑠 

−
1

10
− 𝑠𝑖𝑛 (𝜋

𝑥+𝑦

√2
),      𝑥𝑠 ≤

𝑥+𝑦

√2
≤ 1
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Example 6: 

 3.12a)  𝑈𝑡 + (
𝑈2

2√2
)
𝑥
+ (

𝑈2

2√2
)
𝑦
= 𝑠𝑖𝑛 (

𝑥+𝑦

√2
) 𝑐𝑜𝑠 (

𝑥+𝑦

√2
)  

𝜋

4√2
≤ 𝑥, 𝑦 ≤

3𝜋

4√2
 

 

Boundary conditions 

 3.12b)  𝑈(𝑥, 𝑦) = 𝑠𝑖𝑛 (
𝑥+𝑦

√2
)    𝑥, 𝑦 =

𝜋

4√2
 𝑜𝑟 𝑥, 𝑦 =

3𝜋

4√2
 

 

Initial conditions 

 3.12c)  𝑈(𝑥, 𝑦) = 𝛽𝑠𝑖𝑛 (
𝑥+𝑦

√2
)    𝛽 =

3

2
 

 

Steady state solution 

 3.12d)  𝑈(𝑥, 𝑦) = 𝑠𝑖𝑛 (
𝑥+𝑦

√2
) 
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4. MATHWORKS’ MATLAB IMPLEMENTATION OF WENO-3 ALGORITHM 

 

 

EXAMPLE SOLUTIONS 

 

 

Example 1: 

                 

𝑈𝑡 + (
1

2
𝑈2)

𝑥
= 𝑐𝑜𝑠(𝑥 + 𝑡) [1 + 𝑠𝑖𝑛 (𝑥 + 𝑡)] 

 

 

[FIGURE 11] 

WENO approximation (Figure 11 left) and centered difference approximation 

(Figure 11 right) to (3.7a) at 𝑡 = 1 and 𝑁 = 160. The CFL condition is set to 0.5. 

 

Example 1 is meant purely to introduce the WENO methodology in comparison to more standard finite 

difference schemes by modeling a moving sinusoidal wave. It is not considered part of the convergence 

study. Example 1 is also the only example with a time dependent source term, and as such there is no 

steady state solution to converge to. So instead of a total variation diminishing scheme, a comparison is 

made between the time marching Runge-Kutta (2.20a) and centered difference schemes (1.26) after one 

second has elapsed. From [Table 1] it can be seen that even though neither scheme offers great 

performance, relatively speaking the WENO scheme is able to achieve a similar 𝐿1-𝑛𝑜𝑟𝑚 as the centered 

difference scheme does with a CFL condition two hundred times smaller, and on average is an order of 

magnitude more accurate. 
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[FIGURE 12] 

WENO approximation to (3.7a) at 𝑡 = 1 and 𝑁 = 160 (Figure 12 left) and 

centered difference approximation (Figure 12 right). The CFL condition is set to 

4, which is quite large. The centered difference approximation is crumbling 

much more significantly than the WENO approximation. 

 

Comparison of Various CFL Conditions on 𝐿1-𝑛𝑜𝑟𝑚 

 Time Marching Runge-Kutta WENO Centered Difference 

CFL 𝑁 = 80 𝑁 = 160 𝑁 = 320 𝑁 = 640 𝑁 = 80 𝑁 = 160 𝑁 = 320 𝑁 = 640 

0.01 2.1423e-04 1.0932e-04 5.7976e-05 2.9373e-05 0.0404 0.0209 0.0106 0.0054 

0.1 0.0022 0.0011 5.8444e-04 2.9416e-04 0.0505 0.0261 0.0133 0.0067 

0.5 0.0112 0.0058 0.0029 0.0015 0.0947 0.0490 0.0249 0.0125 

1 0.0222 0.0116 0.0059 0.0152 0.1473 0.0768 0.0392 0.0277 

2 0.0461 0.0228 0.0165 - 0.2506 0.1306 0.0685 - 

 

[TABLE 2] 

A comparison of the 𝐿1-𝑛𝑜𝑟𝑚 at different discretization and CFL settings for 

both the time-marching Runge-Kutta WENO and centered difference schemes. 

What the WENO scheme is able to achieve with a CFL condition of 2, and the 

centered difference scheme achieves with CFL of 0.01 for the same 

discretization. 
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Example 2: 

 

𝑈𝑡 − (
1

2
𝑈2)

𝑥
= 𝑈                  

 

 

[FIGURE 13]  

WENO approximation to (3.8a) with 𝑁 = 80 pre- (Figure 13 left) and post-

processing (Figure 13 right).  

 

This is the inviscid Burger’s Equation (1.7) with a source term (3.8a). This example has been seen before 

(Figure 4) and is now shown in a convergent steady state using WENO-3. Due to its linearity and the 

existence of a strong shock, an estimate to the discontinuity can be made and the discontinuous region 

can be refined to provide better resolution (Figure 11 right). Concerning the rates of convergence 

between the time-marching and fast-sweeping schemes, third-order accurate solutions are shown to 

have accelerated convergence potential using the fast-sweeping methodology. This equates to needing 

two to three times fewer iterations to reach the same degree of convergence, and with refinements to 

the extrapolation factor the overall algorithm can be made 80% more efficient than the time-marching 

variant. 
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 [FIGURE 14] 

 

 

 
[FIGURE 15] 

WENO approximation to (3.8a) with 𝑁 = 320 pre- (Figure 14 and 15 left) and 

post-processing (Figure 14 and 15 right), with a close-up of the discontinuous 

region given in (Figure 15). 
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[FIGURE 16] 

 

 

 
 [FIGURE 17] 

WENO approximation to (3.8a) with 𝑁 = 320 pre- (Figure 16 left) and post-

processing (Figure 16 right) in a close-up of the discontinuous region.. 

Estimated location of discontinuous points (Figure 17 left) and the residual 

history for time-marching and fast-sweeping schemes at 𝑁 = 80, 160, 320, 640 

(Figure 17 right) in a log-log plot. 
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Error and Iteration Count Comparison 

𝑁 𝐿∞ error Order 𝐿1 error Order Iteration Count 
Time-Marching 

Iteration Count  
Fast-Sweeping 

40 4.6819e-04 - 3.1193e-05 - 1113 513 

80 8.1285e-06 5.85 8.4507e-07 5.21 2098 964 

160 1.3657e-07 5.89 5.6482e-08 3.90 3981 1831 

320 1.2144e-08 3.49 4.2246e-09 3.74 7580 3478 

640 4.7329e-10 4.68 1.5354e-10 4.78 14446 6590 

 

[TABLE 3] 

For all discretizations, a comparison is made of the error and order for the fast-

sweeping and time-marching algorithms, including iteration count. The 

extrapolation factor is set to 1. 

 

Extrapolation Factor Comparison on Iteration Count 

𝜔 𝑁 = 80 𝑁 = 160 𝑁 = 320 𝑁 = 640 

0.9 1083 2055 3898 7392 

1.0 964 1831 3478 6590 

1.5 603 1147 2195 4187 

2.0 422 802 1537 2954 

2.1 397 753 1444 - 

2.5 316 - - - 

3.0 241 - - - 

Optimal Iteration 
Reduction % 

75% 58.87% 58.48% 55.17% 

 

[TABLE 4] 

For all discretizations, various extrapolation factors are used within the fast-

sweeping Gauss-Seidel scheme in order to reduce iteration count. The 

percentage reduction is a comparison of the 𝜔 = 1 iteration count and the 

minimum able to be achieved. 

 

 

 

 

 



42 
 

Example 3: 

                     

𝑈𝑡 + (
1

2
𝑈2)

𝑥
= 𝑠𝑖𝑛 (𝑥)𝑐𝑜𝑠(𝑥) 

 

 

[FIGURE 18] 

WENO approximation to (3.9a) with  𝑁 = 80. Assuming a strong shock, the red 

point estimates its location, pre- (Figure 18 left) and post-processing (Figure 18 

right). 

 

The inviscid Burger’s Equation with a source term (3.9a).  Third-order accuracy is confirmed across 

multiple different mesh discretizations, and with the use of the most ambitious extrapolation factor 

overall efficiency can be increased by over 70%. A post-processing to the shock location is also applied 

to meshes of 𝑁 = 80 and 𝑁 = 320, and if a strong shock can be assumed, the overall accuracy of the 

function can be improved (Table 7). Scatter and line plots are given to showcase the potential of shock 

post-processing. 
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[FIGURE 19] 

 

 

 

[FIGURE 20] 

Close up of the WENO approximation with 𝑁 = 80 pre- (Figure 19 and 20 left) 

and post-processing (Figure 29 and 20 right) around the shock location, 

connected by a line (Figure 20) to showcase the extent to which post 

processing helps resolve the shock location. 
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[FIGURE 21] 

 

 

 

[FIGURE 22] 

WENO approximation with 𝑁 = 320 (Figure 21) and a close up of the same 

(Figure 22), with pre- and post-processing around the shock location. 
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[FIGURE 23] 

 

 

 

[FIGURE 24] 

Close up of the WENO approximation with 𝑁 = 320 pre- and post-processing 

(Figure 23). Estimated location of discontinuous points (Figure 24 left) and the 

residual history for time-marching and fast-sweeping schemes at 𝑁 =

80, 160, 320, 640 (Figure 24 right) in a log plot. 

 

Error and Iteration Count Comparison 

𝑁 𝐿∞ error Order 𝐿1 error Order Iteration Count 
Time-Marching 

Iteration Count  
Fast-Sweeping 

80 0.0048 - 1.6596e-04 - 482 244 

160 2.0466e-04 4.55 5.7707e-06 4.84 941 484 

320 2.5783e-06 6.31 3.9717e-07 3.86 1839 952 

640 1.7871e-07 3.85 4.0009e-08 3.31 3592 1951 
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[TABLE 5] 

For all discretizations, a comparison is made of the error and order for the 

time-marching and fast-sweeping algorithms, along with iteration counts. The 

extrapolation factor is set to 1. 

 

Extrapolation Factor Comparison on Iteration Count 

𝜔 𝑁 = 80 𝑁 = 160 𝑁 = 320 𝑁 = 640 

0.9 274 542 1063 2201 

1.0 244 484 952 1951 

1.25 192 380 746 1495 

1.5 154 308 608 1197 

1.75 - 256 510 1010 

2.0 - - - - 

Optimal Iteration 
Reduction % 

36.88% 47.12% 46.43% 48.23% 

 

[TABLE 6] 

For all discretizations, various extrapolation factors are used within the fast-

sweeping Gauss-Seidel scheme in order to reduce iteration count. The 

percentage reduction is a comparison of the 𝜔 = 1 iteration count and the 

minimum able to be achieved. 

 

N 𝐿1 error  𝐿1 error Post 
Processing 

80 0.0032 5.2207e-04 

160 0.0016 6.4930e-05 

320 8.0679e-04 9.0798e-06 

640 4.0084e-04 1.9314e-06 

 

[TABLE 7] 

A comparison of the 𝐿1-𝑛𝑜𝑟𝑚 at different discretizations for the shock pre- and 

post-processing procedures. The 𝐿1-𝑛𝑜𝑟𝑚 is taken across the entire domain, 

excluding only the singular estimated discontinuous point. 
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Example 4: 

 

𝑈𝑡 + (
1

2
𝑈2)

𝑥
+ 𝑈𝑦 = 0 

 

[FIGURE 25] 

WENO approximation to (3.10a) with  𝑁 = 80 and 𝑀 = 80. 

 

The first of three 2-dimensional examples (3.10a). The solution exhibits areas of smooth and 

discontinuous transitions, and because a strong shock cannot be assumed across the entire 

discontinuous region, a range of discontinuous locations (Figure 28) is estimated along with estimates 

for the singular point (Figure 29). These are shown in the context of the contour lines (Figure 30) and the 

characteristic lines (Figure 31), both of which refer to similar information regarding the spatial dynamics 

of the steady state solution. Various cross-sections are taken in both the 𝑥- and 𝑦- directions, and the 

fast-sweeping approach with a maximized extrapolation factor is around 50% more efficient than the 

time-marching scheme. The two schemes are nearly identical for 𝜔 near unity. 
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[FIGURE 26] 

 

 

[FIGURE 27] 

The exact solution (Figure 26) at a tighter angle and a WENO approximation 

(Figure 27) with  𝑁 = 80 and 𝑀 = 80 using a surface plot.  
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[FIGURE 28] 

 

 

[FIGURE 29] 

All candidate point values for estimated discontinuities (Figure 28) and a plot of 

the estimated location of discontinuity (Figure 29) assuming a single point. 
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[FIGURE 30] 

 

 

 

[FIGURE 31] 

Contour lines (Figure 30) and the characteristic lines (Figure 31) which the 

solution adheres to. Note how the three previous figures (Figure 29, 30, and 

31) all represent similar information.  
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[FIGURE 32] 

 

[FIGURE 33] 
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[FIGURE 34] 

 

[FIGURE 35] 
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[FIGURE 36] 

 

[FIGURE 37] 
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Various cross-sections at 𝑌 = 0.1, 0.25, 0.5, 0.75 (Figure 32, 33, 34, 35) and 

𝑋 = 0.5, 0.7 (Figure, 36 and 37). A spread is given for the estimated location of 

discontinuity (left image), and a single point is given in the event of a strong 

shock (right image) with  𝑁 = 80 and 𝑀 = 80. 

 

     Error and Iteration Count Comparison 

𝑁 𝐿∞ error Order 𝐿1 error Order Iteration Count 
Time-Marching 

Iteration Count  
Fast-Sweeping 

20 0.0043 - 2.4000e-04 - 152 156 

40 3.7521e-05 6.84 2.1755e-06 6.78 242 236 

80 1.2934e-06 4.86 2.4847e-08 6.45 418 410 

160 2.2077e-09 9.19 2.3475e-11 10.05 767 737 

320 9.2149e-15 17.87 2.2152e-15 13.37 1436 1391 

 

[TABLE 8] 

For all discretizations, a comparison is made of the error and order for the fast-

sweeping and time-marching algorithms, including iteration count. The 

extrapolation factor is set to 1. 

 

Extrapolation Factor Comparison on Iteration Count 

𝜔 𝑁 = 20 𝑁 = 40 𝑁 = 80 𝑁 = 160 

0.9 168 265 450 828 

1.0 156 236 410 737 

1.5 110 158 268 482 

2.0 88 126 202 358 

2.25 82 114 179 318 

2.5 - - - - 

Optimal Iteration 
Reduction % 

47.44% 51.69% 56.34% 56.85% 

 

[TABLE 9] 

For all discretizations, various extrapolation factors are used within the fast-

sweeping Gauss-Seidel scheme in order to reduce iteration count. The 

percentage reduction is a comparison of the 𝜔 = 1 iteration count and the 

minimum able to be achieved. 
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Example 5: 

 

𝑈𝑡 + (
𝑈2

2√2
)
𝑥

+ (
𝑈2

2√2
)
𝑦

= −𝑈𝜋𝑐𝑜𝑠 (𝜋
𝑥 + 𝑦

√2
) 

         

[FIGURE 38] 

WENO approximation to (3.11a) with  𝑁 = 80 and 𝑀 = 80.  

 

The second 2-dimensional example is another deformed sheet (3.11a) with a rich smooth region and an 

area of strong discontinuity. The line plots without any discontinuity estimate (Figure 40 and 41) are 

approximations at 𝑁 = 40 and 𝑁 = 80 along the long diagonal from left-to-right. Estimates to the 

discontinuous points are shown (Figure 43) in relation to the contour lines (Figure 44) to show their 

similar nature, as they are plots of the same information essentially. The discontinuity is then traversed 

at three different locations in the 𝑦-plane, and overall efficiency of the fast-sweeping scheme is shown 

to be upward of 70% over that of the time-marching method. This turned out to be the most demanding 

example to solve at higher mesh discretizations (note the iteration count of twenty-thousand out of 

nowhere) resulting in lengthy runtimes for the Matlab code. This is because slight oscillations in the 

solution are present for quite some time, and especially in the 𝑁 = 320, where nearly after an entire 

day of calculations did the solution converge. 
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[FIGURE 39] 

 

 

 

[FIGURE 40] 

The exact solution (Figure 39) and a left-to-right plot of the diagonal (Figure 40) 

with  𝑁 = 40 and 𝑀 = 40.  

 



57 
 

 

 [FIGURE 41] 

 

 

 

 [FIGURE 42] 

A left-to-right plot of the diagonal (Figure 41) with  𝑁 = 80 and 𝑀 = 80, and a 

mesh estimation for possible discontinuous locations (Figure 42) with  𝑁 = 160 

and 𝑀 = 160. 
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[FIGURE 43] 

 

 

 [FIGURE 44] 

A top-down perspective of the candidate discontinuity point values (Figure 43), 

and the contour lines of the solution (Figure 44). 
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[FIGURE 45] 

 

[FIGURE 46] 
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[FIGURE 47] 

 

Various cross-sections at 𝑌 = 0, 0.1, 0.17 (Figure 45, 46, and 47). A spread is 

given for the estimated location of discontinuity. 
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Error and Iteration Count Comparison 

𝑁 𝐿∞ error Order 𝐿1 error Order Iteration Count 
Time-Marching 

Iteration Count  
Fast-Sweeping 

40 3.2931e-04 - 4.0000e-05 - 975 726 

80 2.9855e-05 3.4634 4.7446e-06 3.07 1828 1341 

160 1.9848e-06 3.9109 3.8745e-07 3.61 Not Convergent 2725 

320 1.6148e-07 3.6196 4.5116e-08 3.10 Not Convergent 20371 

 

[TABLE 10] 

For all discretizations, a comparison is made of the error and order for the fast-

sweeping and time-marching algorithms, including iteration count. The 

extrapolation factor is set to 1. 

 

Extrapolation Factor Comparison on Iteration Count 

𝜔 𝑁 = 20 𝑁 = 40 𝑁 = 80 

0.9 543 977 1826 

1.0 481 865 1615 

1.5 290 523 959 

2 192 345 611 

2.2 164 293 513 

2.75 109 - - 

Optimal Iteration 
Reduction % 

77.34% 66.13% 68.23% 

 

[TABLE 11] 

For all discretizations, various extrapolation factors are used within the fast-

sweeping Gauss-Seidel scheme in order to reduce iteration count. The 

percentage reduction is a comparison of the 𝜔 = 1 iteration count and the 

minimum able to be achieved. 
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Example 6: 

 

𝑈𝑡 + (
𝑈2

2√2
)
𝑥

+ (
𝑈2

2√2
)
𝑦

= 𝑠𝑖𝑛 (
𝑥 + 𝑦

√2
) 𝑐𝑜𝑠 (

𝑥 + 𝑦

√2
) 

 

      

 [FIGURE 48] 

WENO approximation to (3.12a) with  𝑁 = 40 and 𝑀 = 40.  

 

The final 2-dimensional example (3.12a), which is now a smooth sheet without any discontinuities. A 

similar investigation reveals that even under these more simple circumstances, efficiency improvements 

were still seen to be in the 70% range. Two cross-sections are taken to compare accuracy (Figure 53 and 

54), with another cross diagonal plot taken as well (Figure 52). To return to the earlier discussions of CFL 

conditions, a value of 1 was used as well, to show yet another variable that can be tweaked to boost 

iterative convergence. As in [Figure 4], too large a CFL condition however results in divergence (Figure 

55 and 56]. 
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[FIGURE 49] 

 

 

 

[FIGURE 50] 

The exact solution (Figure 49) and an alternate angle to the WENO 

approximation (Figure 50) with  𝑁 = 80 and 𝑀 = 80.  
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[FIGURE 51] 

 

 

 

 [FIGURE 52] 

Contour lines (Figure 51) and a plot of the left-to-right diagonal (Figure 52) with  

𝑁 = 80 and 𝑀 = 80.  
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[FIGURE 53] 

 

 

 

 [FIGURE 54] 

Various cross-sections at 𝑌 = 0.5, 1.5 (Figure 53 and 54) with  𝑁 = 80 and 

𝑀 = 80.  
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[FIGURE 55] 

 

 

 

 [FIGURE 56] 

The beginning of divergence due to a CFL condition of 1.1 (Figure 55) at 

𝑡 = 0.54, along with a cross-section at 𝑌 = 1.5 (Figure 56) with  𝑁 = 80 and 

𝑀 = 80.  

. 
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Error and Iteration Count Comparison 

𝑁 𝐿∞ error Order 𝐿1 error Order Time-Marching Fast Sweeping CFL = 1 

40 2.7941e-05 - 9.6513e-06 - 229 211 85 

80 1.7496e-06 4.00 7.8847e-07 3.61 429 395 150 

160 1.0575e-07 4.05 5.5526e-08 3.83 834 743 275 

320 6.2764e-09 4.07 3.0990e-09 4.16 1363 1247 515 

 

[TABLE 12] 

For all discretizations, a comparison is made of the error and order for the fast-

sweeping and time-marching algorithms, including iteration count. The 

extrapolation factor is set to 1. 

 

Extrapolation Factor Comparison on Iteration Count 

𝜔 𝑁 = 40 𝑁 = 80 𝑁 = 160 

0.9 238 446 839 

1.0 211 395 743 

1.25 162 301 571 

1.5 130 236 447 

2 85 150 274 

2.1 78 135 243 

2.25 - - - 

Optimal Iteration 
Reduction % 

63.03% 65.82% 67.29% 

 

[TABLE 13] 

For all discretizations, various extrapolation factors are used within the fast-

sweeping Gauss-Seidel scheme in order to reduce iteration count. The 

percentage reduction is a comparison of the 𝜔 = 1 iteration count and the 

minimum able to be achieved. 
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5. CONCLUSION 

 

 

COMPARISON OF ITERATION OPTIMIZATION 

 

Example 1:  

 Time Marching Runge-Kutta WENO Centered Difference 

CFL 𝑁 = 80 𝑁 = 160 𝑁 = 320 𝑁 = 640 𝑁 = 80 𝑁 = 160 𝑁 = 320 𝑁 = 640 

0.01 2.1423e-04 1.0932e-04 5.7976e-05 2.9373e-05 0.0404 0.0209 0.0106 0.0054 

0.1 0.0022 0.0011 5.8444e-04 2.9416e-04 0.0505 0.0261 0.0133 0.0067 

0.5 0.0112 0.0058 0.0029 0.0015 0.0947 0.0490 0.0249 0.0125 

1 0.0222 0.0116 0.0059 0.0152 0.1473 0.0768 0.0392 0.0277 

2 0.0461 0.0228 0.0165 - 0.2506 0.1306 0.0685 - 

 

[TABLE 14] 

 

Example 2:  

𝑁 Time-Marching Fast Sweeping Optimization 

80 2098 241 88.51% 

160 3918 753 80.78% 

320 7580 1444 80.95% 

640 14446 2954 79.55% 

 

[TABLE 15] 

 

Example 3:  

𝑁 Time-Marching Fast Sweeping Optimization 

80 482 154 70.10% 

160 941 256 74.68% 

320 1839 510 74.70% 

640 3592 1010 75.54% 

 

[TABLE 16] 
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Example 4:  

𝑁 Time-Marching Fast Sweeping Optimization 

20 152 82 46.05% 

40 242 114 52.89% 

80 418 179 57.18% 

160 767 318 58.54% 

 

[TABLE 17] 

 

 

Example 5:  

𝑁 Time Marching Fast Sweeping Optimization 

40 975 293 69.95% 

80 1828 513 71.94% 

 

[TABLE 18] 

 

Example 6:  

𝑁 Time Marching Fast Sweeping Optimization 

40 229 78 65.94% 

80 429 135 68.53% 

160 834 243 70.86% 

 

[TABLE 19] 

 

 

CONCLUDING REMARKS 

 

 

Across all examples it is clear that the fast sweeping Gauss-Seidel total variation diminishing scheme 

offers significantly reduced iteration counts to achieve convergence by comparison to its time marching 

counterpart. Not only does the fast sweeping methodology converge at roughly twice the speed as the 

time marching approach for Examples 2 and 3, but after adjustments are made to the extrapolation 

factor, all examples show on average a 50% reduction in iteration count, and for some examples the 
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reduction is above 80%. In Example 5, convergence was possible at larger discretizations only when the 

fast sweeping scheme was utilized, showcasing that not only is this scheme more expedient in nature 

than the time-marching approach, but that it is also more reliable in terms of ensuring overall 

convergence to the steady state solution. For example 6, where there is no shock or discontinuity, the 

unmodified fast sweeping method is roughly equivalent in iteration count to the time marching 

approach, however significant improvements are still possible when the extrapolation factor is 

increased, according to (Table 11). 

 On the shock post-processing section of this thesis, an interesting extension might be to 

consider assigning two separate discretizations to the entire domain, where the area of discontinuity is 

given a finer mesh than the surrounding smoother regions. Each discretization is uniform [10], and such 

a scheme could potentially achieve greater accuracy even while user coarser mesh dimensions. Another 

angle might be that, instead of a post-processing procedure, the smoothness indicator function is 

continually updating the possible location of discontinuity, and this region is dynamically assigned a 

more refined mesh, while the remaining regions are given a coarser mesh. 

 Now, all that has been considered in this thesis has merely been the iteration count for each 

algorithm to obtain convergence, without concern for the actual running time of the algorithms 

involved. This is because these algorithms (see Appendix) are notoriously unfriendly for Matlab, and 

lengthy run times are an unavoidable reality for the 2-D examples with fine mesh discretizations, ranging 

from several minutes to nearly an entire day. A future extension of these results and the Matlab code 

would be to enhance the run times of these algorithms, and to therefore make these algorithms 

desirable both in terms of iteration count and run time. 
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7. APPENDICES 

 

WENO RUNGE-KUTTA ALGORITHM IN PSEUDO-CODE  

Given: 

 Equation 

  𝑈𝑡 + (
1

2
𝑈2)

𝑥
= 𝜙 

 Initial/Boundary conditions 

  𝑈0 = 𝑈(𝑥, 0)    𝑈(𝑎, 𝑡) = 𝛼   𝑈(𝑏, 𝑡) = 𝛽 

 Discretization 

  𝑥 ∈ {𝑥1 = 𝑎, 𝑥2, 𝑥3, … , 𝑥𝑖, … , 𝑥𝑁−2, 𝑥𝑁−1, 𝑥𝑁 = 𝑏} 

 

While:    𝐿1-𝑛𝑜𝑟𝑚  ≥ 𝛿    𝛿 = 10−11 

  

 Calculate 𝑈(1) 

  Determine 𝑓
𝑖+

1

2

𝑛  and 𝑓
𝑖−

1

2

𝑛  

Determine 𝐿(𝑈𝑖
𝑛) = −

1

𝑑𝑥
(𝑓
𝑖+

1

2

𝑛 − 𝑓
𝑖−

1

2

𝑛 ) + 𝜙𝑖 

Determine 𝑈𝑖
(1)
= 𝑈𝑖

𝑛 + 𝑑𝑡 ∙ 𝐿(𝑈𝑖
𝑛)  

 Calculate 𝑈(2) 

  Determine 𝑓
𝑖+

1

2

(1)
 and 𝑓

𝑖−
1

2

(1)
 

Determine  𝐿 (𝑈𝑖
(1)
) = −

1

𝑑𝑥
(𝑓
𝑖+
1

2

(1)
− 𝑓

𝑖−
1

2

(1)
) + 𝜙𝑖 

Determine 𝑈𝑖
(2)
=

3

4
𝑈𝑖
𝑛 +

1

4
𝑈𝑖
(1)
+
1

4
𝑑𝑡 ∙ 𝐿(𝑈𝑖

(1)
)  

 Calculate 𝑈𝑛+1 

Determine 𝑓
𝑖+

1

2

(2)
 and 𝑓

𝑖−
1

2

(2)
 

Determine  𝐿 (𝑈𝑖
(2)) = −

1

𝑑𝑥
(𝑓
𝑖+
1

2

(2) − 𝑓
𝑖−
1

2

(2)
) + 𝜙𝑖 

Determine 𝑈𝑖
𝑛+1 =

1

3
𝑈𝑖
𝑛 +

2

3
𝑈𝑖
(2)
+
2

3
𝑑𝑡 ∙ 𝐿(𝑈𝑖

(2)
)   

 Calculate 𝐿1-norm 

𝐿1 =
1

𝑁
∑ ‖𝑈𝑛 − 𝑈𝑛+1‖𝑁
𝑖=1   

 Update values 

  𝑈𝑛 = 𝑈𝑛+1 

 

End 
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ADDITIONAL FIGURES 

 

 

[FIGURE 57] 

Example 4 at steady state on a 320-by-320 grid.  

 

 

[FIGURE 58] 

Example 5 at steady state on a 320-by-320 grid. This graph required over 22 

hours of runtime to produce, so I felt obliged to include it in the Appendix 

section. 
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MATLAB IMPLEMENTATION OF TIME MARCHING EXAMPLE 3 

 

    %Initialize domain 

a = 0; 

b = pi; 

    %Set discretization 

N = 80; 

DX = (b-a)/N; 

X = (a:DX:b); 

    %Assign ghost points 

X = horzcat(a-DX,X,X(end)+DX); 

    %Constants 

sigma = 10^-11; 

epsilon = 10^-6; 

    %Initial conditions 

U = 0.5*sin(X); 

    %Set boundary conditions for ghost points 

U(1) = sin(X(1)); 

U(end) = -sin(X(end)); 

    %Initialize U1, U2, and Un+1 arrays 

U_1 = [U(1),U(2),zeros(1,numel(X)-4),U(end-1),U(end)]; 

U_2 = [U(1),U(2),zeros(1,numel(X)-4),U(end-1),U(end)]; 

U_new = [U(1),U(2),zeros(1,numel(X)-4),U(end-1),U(end)]; 

    %Initialize the exact solution 

exact = zeros(1,numel(X)); 

    %Assign the exact solution 

for k = 1:numel(X) 

    if X(k) < (2*pi)/3 

        exact(k) = sin(X(k)); 

    else 

        exact(k) = -1*sin(X(k)); 

    end 

end 

    %Initialize constants for the while loop 

L1norm = inf; 

iterations = 0; 

    %Iterate until successive iterations fall below 

    %the threshold established by sigma 

while L1norm > sigma 

        %Lax-Friedrich flux and time discretization 

    alphaFlux = max(abs(U)); 

    DT = (1/alphaFlux)*0.5*DX; 

        %Iterate through all points, not including ghost points 

        %in order to calculate U1 

    for i = 3:numel(X)-2 

            %Calculate positive flux terms 

        fpm2 = 0.5*(0.5*U(i-2)^2 + alphaFlux*U(i-2)); 

        fpm1 = 0.5*(0.5*U(i-1)^2 + alphaFlux*U(i-1)); 

        fp = 0.5*(0.5*U(i)^2 + alphaFlux*U(i)); 

        fpp1 = 0.5*(0.5*U(i+1)^2 + alphaFlux*U(i+1)); 

        fpp2 = 0.5*(0.5*U(i+2)^2 + alphaFlux*U(i+2)); 
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            %Calculate negative flux terms 

        fmm2 = 0.5*(0.5*U(i-2)^2 - alphaFlux*U(i-2)); 

        fmm1 = 0.5*(0.5*U(i-1)^2 - alphaFlux*U(i-1)); 

        fm = 0.5*(0.5*U(i)^2 - alphaFlux*U(i)); 

        fmp1 = 0.5*(0.5*U(i+1)^2 - alphaFlux*U(i+1)); 

        fmp2 = 0.5*(0.5*U(i+2)^2 - alphaFlux*U(i+2)); 

            %Calculate positive flux terms at i+1/2 position 

        b0 = (fpp1 - fp)^2; 

        b1 = (fp - fpm1)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fpp = w0*(0.5*fp + 0.5*fpp1) + w1*(-0.5*fpm1 + (3/2)*fp); 

            %Calculate positive flux terms at i-1/2 position 

        b0 = (fp - fpm1)^2; 

        b1 = (fpm1 - fpm2)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fpm = w0*(0.5*fpm1 + 0.5*fp) + w1*(-0.5*fpm2 + (3/2)*fpm1); 

            %Calculate negative flux terms at i+1/2 position 

        b0 = (fmp2 - fmp1)^2; 

        b1 = (fmp1 - fm)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fmp = w0*((3/2)*fmp1 - 0.5*fmp2) + w1*(0.5*fm + 0.5*fmp1); 

            %Calculate negative flux terms at i-1/2 position 

        b0 = (fmp1 - fm)^2; 

        b1 = (fm - fmm1)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fmm = w0*((3/2)*fm - 0.5*fmp1) + w1*(0.5*fmm1 + 0.5*fm); 

            %Combine terms 

        fhp = fpp + fmp; 

        fhm = fpm + fmm; 

            %Calculate L(U) 

        LUn_t = (-1/DX)*(fhp - fhm) + sin(X(i))*cos(X(i)); 

            %Calculate U1 

        U_1(i) = U(i) + DT*LUn_t; 

    end 

        %Iterate through all points, not including ghost points 

        %in order to calculate U2 

 for i = 3:numel(X)-2 

            %Calculate positive flux terms 

        fpm2 = 0.5*(0.5*U_1(i-2)^2 + alphaFlux*U_1(i-2)); 

        fpm1 = 0.5*(0.5*U_1(i-1)^2 + alphaFlux*U_1(i-1)); 

        fp = 0.5*(0.5*U_1(i)^2 + alphaFlux*U_1(i)); 
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        fpp1 = 0.5*(0.5*U_1(i+1)^2 + alphaFlux*U_1(i+1)); 

        fpp2 = 0.5*(0.5*U_1(i+2)^2 + alphaFlux*U_1(i+2)); 

            %Calculate negative flux terms 

        fmm2 = 0.5*(0.5*U_1(i-2)^2 - alphaFlux*U_1(i-2)); 

        fmm1 = 0.5*(0.5*U_1(i-1)^2 - alphaFlux*U_1(i-1)); 

        fm = 0.5*(0.5*U_1(i)^2 - alphaFlux*U_1(i)); 

        fmp1 = 0.5*(0.5*U_1(i+1)^2 - alphaFlux*U_1(i+1)); 

        fmp2 = 0.5*(0.5*U_1(i+2)^2 - alphaFlux*U_1(i+2)); 

            %Calculate positive flux terms at i+1/2 position 

        b0 = (fpp1 - fp)^2; 

        b1 = (fp - fpm1)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fpp = w0*(0.5*fp + 0.5*fpp1) + w1*(-0.5*fpm1 + (3/2)*fp); 

            %Calculate positive flux terms at i-1/2 position 

        b0 = (fp - fpm1)^2; 

        b1 = (fpm1 - fpm2)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fpm = w0*(0.5*fpm1 + 0.5*fp) + w1*(-0.5*fpm2 + (3/2)*fpm1); 

            %Calculate negative flux terms at i+1/2 position 

        b0 = (fmp2 - fmp1)^2; 

        b1 = (fmp1 - fm)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fmp = w0*((3/2)*fmp1 - 0.5*fmp2) + w1*(0.5*fm + 0.5*fmp1); 

            %Calculate negative flux terms at i-1/2 position 

        b0 = (fmp1 - fm)^2; 

        b1 = (fm - fmm1)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fmm = w0*((3/2)*fm - 0.5*fmp1) + w1*(0.5*fmm1 + 0.5*fm); 

            %Combine terms 

        fhp = fpp + fmp; 

        fhm = fpm + fmm; 

            %Calculate L(U1) 

        LU1_tDt = (-1/DX)*(fhp - fhm) + sin(X(i))*cos(X(i)); 

            %Calculate U2 

        U_2(i) = (3/4)*U(i) + (1/4)*U_1(i) + (1/4)*(DT)*LU1_tDt; 

 end 

        %Iterate through all points, not including ghost points 

        %in order to calculate Un+1 

 for i = 3:numel(X)-2 

            %Calculate positive flux terms 

        fpm2 = 0.5*(0.5*U_2(i-2)^2 + alphaFlux*U_2(i-2)); 
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        fpm1 = 0.5*(0.5*U_2(i-1)^2 + alphaFlux*U_2(i-1)); 

        fp = 0.5*(0.5*U_2(i)^2 + alphaFlux*U_2(i)); 

        fpp1 = 0.5*(0.5*U_2(i+1)^2 + alphaFlux*U_2(i+1)); 

        fpp2 = 0.5*(0.5*U_2(i+2)^2 + alphaFlux*U_2(i+2)); 

            %Calculate negative flux terms 

        fmm2 = 0.5*(0.5*U_2(i-2)^2 - alphaFlux*U_2(i-2)); 

        fmm1 = 0.5*(0.5*U_2(i-1)^2 - alphaFlux*U_2(i-1)); 

        fm = 0.5*(0.5*U_2(i)^2 - alphaFlux*U_2(i)); 

        fmp1 = 0.5*(0.5*U_2(i+1)^2 - alphaFlux*U_2(i+1)); 

        fmp2 = 0.5*(0.5*U_2(i+2)^2 - alphaFlux*U_2(i+2)); 

            %Calculate positive flux terms at i+1/2 position 

        b0 = (fpp1 - fp)^2; 

        b1 = (fp - fpm1)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fpp = w0*(0.5*fp + 0.5*fpp1) + w1*(-0.5*fpm1 + (3/2)*fp); 

            %Calculate positive flux terms at i-1/2 position 

        b0 = (fp - fpm1)^2; 

        b1 = (fpm1 - fpm2)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fpm = w0*(0.5*fpm1 + 0.5*fp) + w1*(-0.5*fpm2 + (3/2)*fpm1); 

            %Calculate negative flux terms at i+1/2 position 

        b0 = (fmp2 - fmp1)^2; 

        b1 = (fmp1 - fm)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fmp = w0*((3/2)*fmp1 - 0.5*fmp2) + w1*(0.5*fm + 0.5*fmp1); 

            %Calculate negative flux terms at i-1/2 position 

        b0 = (fmp1 - fm)^2; 

        b1 = (fm - fmm1)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fmm = w0*((3/2)*fm - 0.5*fmp1) + w1*(0.5*fmm1 + 0.5*fm); 

            %Combine terms 

        fhp = fpp + fmp; 

        fhm = fpm + fmm; 

            %Calculate L(U2) 

        LU2_thDt = (-1/DX)*(fhp - fhm) + sin(X(i))*cos(X(i)); 

            %Calculate Un+1 

        U_new(i) = (1/3)*U(i) + (2/3)*U_2(i) + (2/3)*(DT)*LU2_thDt; 

 end 

        %Calculate L1 norm of successive iterations 

    L1norm = max(abs(U_new - U)); 

        %Update iteration count 
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    iterations = iterations + 1; 

        %Update U values 

    U = U_new; 

end 

    %Output iterations 

iterations 

    %Initialize exact and U variants without shock values 

exact_m = exact; 

U_m = U; 

    %Shock location 

c = 2*pi/3; 

for j = 1:numel(X) 

    if (X(j) > c - 0.1) && (X(j) < c + 0.1) 

            %If the value of X is within 0.1 of the shock 

            %then zero out the values of exact and U variants 

        exact_m(j) = 0; 

        U_m(j) = 0; 

    end 

end 

    %Calculate L1 and Linfinity errors 

L_inf = norm(U_m - exact_m,inf) 

L_1 = (1/numel(U_m))*norm(U_m - exact_m,1) 

 

 

Published with MATLAB® R2015a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mathworks.com/products/matlab


80 
 

MATLAB IMPLEMENTATION OF FAST SWEEPING EXAMPLE 6 

 

    %Initialize domain 

a = pi/(4*sqrt(2)); 

b = 3*pi/(4*sqrt(2)); 

    %Set discretization 

N = 40; 

DX = (b-a)/N; 

DY = DX; 

X = (a:DX:b); 

    %Assign ghost points 

X = horzcat(a-2*DX,a-DX,X,X(end)+DX,X(end)+2*DX); 

    %Same assignment for Y 

Y = X; 

    %Constants 

sigma = 10^-11; 

epsilon = 10^-6; 

gamma = 0.5; 

omega = 1; 

    %Initialize solution and exact arrays 

U = zeros(numel(X),numel(Y)); 

exact = zeros(numel(X),numel(Y)); 

for i = 1:numel(Y) 

    for j = 1:numel(X) 

            %Initial conditions 

        U(j,i) = 1.5*sin((X(i) + Y(j))/(sqrt(2))); 

            %Initialize the exact solution 

        exact(j,i) = sin((X(i) + Y(j))/(sqrt(2))); 

    end 

end 

    %Create arrays for the index values of X and Y 

listx = 1:1:numel(X); 

listy = 1:1:numel(Y); 

    %Set boundary conditions for ghost points 

U(1,:) = exact(1,:); 

U(2,:) = exact(2,:); 

U(end,:) = exact(end,:); 

U(end-1,:) = exact(end-1,:); 

U(:,1) = exact(:,1); 

U(:,2) = exact(:,2); 

U(:,end) = exact(:,end); 

U(:,end-1) = exact(:,end-1); 

    %Initialize U1, U2, and Un+1 arrays 

U_1 = U; 

U_2 = U; 

U_new = U; 

    %Initialize constants for the while loop 

L1norm = inf; 

iterations = 0; 

    %Initialize the variable that informs the sweep direction 

sweep_direction = 0; 
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    %The direction variable will rotate among the values 

    %1,2,3, and 0 which specifies the sweep direction 

direction = mod(sweep_direction,4); 

    %Iterate until successive iterations fall below 

    %the threshold established by sigma 

while L1norm > sigma && iterations < 2000 

        %Reset the list of index values 

    listx = 1:1:numel(X); 

    listy = 1:1:numel(Y); 

        %Lax-Friedrich flux and time discretization 

    term = max(max(U)); 

    alphaFlux_X = max(max(abs( (1/sqrt(2))*term^2))); 

    alphaFlux_Y = max(max(abs( (1/sqrt(2))*term^2))); 

    DT = gamma*DX*(1/alphaFlux_X); 

        %Update sweep direction 

    sweep_direction = sweep_direction + 1; 

        %Apply modulus to this value 

    direction = mod(sweep_direction,4); 

        %Determine the indexing according to the direction variable 

    if direction == 1 

        listx = listx; 

        listy = listy; 

    elseif direction == 2 

        listx = flip(listx); 

        listy = listy; 

    elseif direction == 3 

        listx = flip(listx); 

        listy = flip(listy); 

    elseif direction == 0 

        listx = listx; 

        listy = flip(listy); 

    end 

        %Reset the number of established points this iteration 

    x_points = 0; 

    y_points = 0; 

        %Iterate through all points, not including ghost points 

        %in order to calculate U1 

    for i = listx(3:end-2); 

        for j = listy(3:end-2); 

                %Y direction 

                %Determine stencil parameters 

            if y_points == 0 

                    %When there are no available new values 

                A = U(j-2,i); 

                B = U(j-1,i); 

                C = U(j,i); 

                D = U(j+1,i); 

                E = U(j+2,i); 

            elseif y_points == 1 && (direction == 1 || direction == 2) 

                    %When there is 1 available new value and 

                    %the sweep direction is 1:M 

                A = U(j-2,i); 

                B = U_1(j-1,i); 
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                C = U(j,i); 

                D = U(j+1,i); 

                E = U(j+2,i); 

            elseif y_points >= 2 && (direction == 1 || direction == 2) 

                    %When there is 2 or more available new values and 

                    %the sweep direction is 1:M 

                A = U_1(j-2,i); 

                B = U_1(j-1,i); 

                C = U(j,i); 

                D = U(j+1,i); 

                E = U(j+2,i); 

            elseif y_points == 1 && (direction == 3 || direction == 0) 

                    %When there is 1 available new value and 

                    %the sweep direction is M:1 

                A = U(j-2,i); 

                B = U(j-1,i); 

                C = U(j,i); 

                D = U_1(j+1,i); 

                E = U(j+2,i); 

            elseif y_points >= 2 && (direction == 3 || direction == 0) 

                    %When there is 2 or more available new values and 

                    %the sweep direction is M:1 

                A = U(j-2,i); 

                B = U(j-1,i); 

                C = U(j,i); 

                D = U_1(j+1,i); 

                E = U_1(j+2,i); 

            end 

                %Calculate positive flux terms 

            gpm2 = 0.5*(0.5*(1/sqrt(2))*A^2 + alphaFlux_Y*A); 

            gpm1 = 0.5*(0.5*(1/sqrt(2))*B^2 + alphaFlux_Y*B); 

            gp = 0.5*(0.5*(1/sqrt(2))*C^2 + alphaFlux_Y*C); 

            gpp1 = 0.5*(0.5*(1/sqrt(2))*D^2 + alphaFlux_Y*D); 

            gpp2 = 0.5*(0.5*(1/sqrt(2))*E^2 + alphaFlux_Y*E); 

                %Calculate negative flux terms 

            gmm2 = 0.5*(0.5*(1/sqrt(2))*A^2 - alphaFlux_Y*A); 

            gmm1 = 0.5*(0.5*(1/sqrt(2))*B^2 - alphaFlux_Y*B); 

            gm = 0.5*(0.5*(1/sqrt(2))*C^2 - alphaFlux_Y*C); 

            gmp1 = 0.5*(0.5*(1/sqrt(2))*D^2 - alphaFlux_Y*D); 

            gmp2 = 0.5*(0.5*(1/sqrt(2))*E^2 - alphaFlux_Y*E); 

                %Calculate positive flux terms at i+1/2 position 

            b0 = (gpp1 - gp)^2; 

            b1 = (gp - gpm1)^2; 

            a0 = (2/3)/(epsilon + b0)^2; 

            a1 = (1/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            gpp = w0*(0.5*gp + 0.5*gpp1) + w1*(-0.5*gpm1 + (3/2)*gp); 

                %Calculate positive flux terms at i-1/2 position 

            b0 = (gp - gpm1)^2; 

            b1 = (gpm1 - gpm2)^2; 

            a0 = (2/3)/(epsilon + b0)^2; 

            a1 = (1/3)/(epsilon + b1)^2; 
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            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            gpm = w0*(0.5*gpm1 + 0.5*gp) + w1*(-0.5*gpm2 + (3/2)*gpm1); 

                %Calculate negative flux terms at i+1/2 position 

            b0 = (gmp2 - gmp1)^2; 

            b1 = (gmp1 - gm)^2; 

            a0 = (1/3)/(epsilon + b0)^2; 

            a1 = (2/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            gmp = w0*((3/2)*gmp1 - 0.5*gmp2) + w1*(0.5*gm + 0.5*gmp1); 

                %Calculate negative flux terms at i-1/2 position 

            b0 = (gmp1 - gm)^2; 

            b1 = (gm - gmm1)^2; 

            a0 = (1/3)/(epsilon + b0)^2; 

            a1 = (2/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            gmm = w0*((3/2)*gm - 0.5*gmp1) + w1*(0.5*gmm1 + 0.5*gm); 

                %Combine terms 

            ghp = gpp + gmp; 

            ghm = gpm + gmm; 

 

                %X direction 

                %Determine stencil parameters 

            if x_points == 0 

                    %When there are no available new values 

                A = U(j,i-2); 

                B = U(j,i-1); 

                C = U(j,i); 

                D = U(j,i+1); 

                E = U(j,i+2); 

            elseif x_points == 1 && (direction == 1 || direction == 0) 

                    %When there is 1 available new value and 

                    %the sweep direction is 1:N 

                A = U(j,i-2); 

                B = U_1(j,i-1); 

                C = U(j,i); 

                D = U(j,i+1); 

                E = U(j,i+2); 

            elseif x_points >= 2 && (direction == 1 || direction == 0) 

                    %When there is 2 or more available new values and 

                    %the sweep direction is 1:N 

                A = U_1(j,i-2); 

                B = U_1(j,i-1); 

                C = U(j,i); 

                D = U(j,i+1); 

                E = U(j,i+2); 

            elseif x_points == 1 && (direction == 2 || direction == 3) 

                    %When there is 1 available new value and 

                    %the sweep direction is N:1 

                A = U(j,i-2); 

                B = U(j,i-1); 
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                C = U(j,i); 

                D = U_1(j,i+1); 

                E = U(j,i+2); 

            elseif x_points >= 2 && (direction == 2 || direction == 3) 

                    %When there is 2 or more available new values and 

                    %the sweep direction is N:1 

                A = U(j,i-2); 

                B = U(j,i-1); 

                C = U(j,i); 

                D = U_1(j,i+1); 

                E = U_1(j,i+2); 

            end 

                %Calculate positive flux terms 

            fpm2 = 0.5*(0.5*(1/sqrt(2))*A^2 + alphaFlux_X*A); 

            fpm1 = 0.5*(0.5*(1/sqrt(2))*B^2 + alphaFlux_X*B); 

            fp = 0.5*(0.5*(1/sqrt(2))*C^2 + alphaFlux_X*C); 

            fpp1 = 0.5*(0.5*(1/sqrt(2))*D^2 + alphaFlux_X*D); 

            fpp2 = 0.5*(0.5*(1/sqrt(2))*E^2 + alphaFlux_X*E); 

                %Calculate negative flux terms 

            fmm2 = 0.5*(0.5*(1/sqrt(2))*A^2 - alphaFlux_X*A); 

            fmm1 = 0.5*(0.5*(1/sqrt(2))*B^2 - alphaFlux_X*B); 

            fm = 0.5*(0.5*(1/sqrt(2))*C^2 - alphaFlux_X*C); 

            fmp1 = 0.5*(0.5*(1/sqrt(2))*D^2 - alphaFlux_X*D); 

            fmp2 = 0.5*(0.5*(1/sqrt(2))*E^2 - alphaFlux_X*E); 

                %Calculate positive flux terms at i+1/2 position 

            b0 = (fpp1 - fp)^2; 

            b1 = (fp - fpm1)^2; 

            a0 = (2/3)/(epsilon + b0)^2; 

            a1 = (1/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            fpp = w0*(0.5*fp + 0.5*fpp1) + w1*(-0.5*fpm1 + (3/2)*fp); 

                %Calculate positive flux terms at i-1/2 position 

            b0 = (fp - fpm1)^2; 

            b1 = (fpm1 - fpm2)^2; 

            a0 = (2/3)/(epsilon + b0)^2; 

            a1 = (1/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            fpm = w0*(0.5*fpm1 + 0.5*fp) + w1*(-0.5*fpm2 + (3/2)*fpm1); 

                %Calculate negative flux terms at i+1/2 position 

            b0 = (fmp2 - fmp1)^2; 

            b1 = (fmp1 - fm)^2; 

            a0 = (1/3)/(epsilon + b0)^2; 

            a1 = (2/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            fmp = w0*((3/2)*fmp1 - 0.5*fmp2) + w1*(0.5*fm + 0.5*fmp1); 

                %Calculate negative flux terms at i-1/2 position 

            b0 = (fmp1 - fm)^2; 

            b1 = (fm - fmm1)^2; 

            a0 = (1/3)/(epsilon + b0)^2; 

            a1 = (2/3)/(epsilon + b1)^2; 
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            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            fmm = w0*((3/2)*fm - 0.5*fmp1) + w1*(0.5*fmm1 + 0.5*fm); 

                %Combine terms 

            fhp = fpp + fmp; 

            fhm = fpm + fmm; 

            term = X(i) + Y(j); 

            term = pi*term; 

            term = term/sqrt(2); 

                %Calculate L 

            L = -((1/DX)*(fhp - fhm)) - ((1/DY)*(ghp - ghm)) + ... 

                (sin((X(i) + Y(j))/(sqrt(2))))*(cos((X(i) + Y(j))/(sqrt(2)))); 

                %Calculate U1 

            U_1(j,i) = U(j,i) + gamma/((alphaFlux_X/DX) + (alphaFlux_X/DY))*L; 

                %Calculate U1 with extrapolation factor 

            U_1(j,i)= omega*U_1(j,i) + (1-omega)*U(j,i); 

                %Increase the number of new Y values 

            y_points = y_points + 1; 

        end 

            %Increase the number of new X values 

        x_points = x_points + 1; 

            %Reset the number of Y values 

        y_points = 0; 

    end 

        %Reset both X and Y values 

    x_points = 0; 

    y_points = 0; 

        %Iterate through all points, not including ghost points 

        %in order to calculate U2 

    for i = listx(3:end-2); 

        for j = listy(3:end-2); 

                %Y direction 

                %Determine stencil parameters 

            if y_points == 0 

                    %When there are no available new values 

                A = U_1(j-2,i); 

                B = U_1(j-1,i); 

                C = U_1(j,i); 

                D = U_1(j+1,i); 

                E = U_1(j+2,i); 

            elseif y_points == 1 && (direction == 1 || direction == 2) 

                    %When there is 1 available new value and 

                    %the sweep direction is 1:M 

                A = U_1(j-2,i); 

                B = U_2(j-1,i); 

                C = U_1(j,i); 

                D = U_1(j+1,i); 

                E = U_1(j+2,i); 

            elseif y_points >= 2 && (direction == 1 || direction == 2) 

                    %When there is 2 or more available new values and 

                    %the sweep direction is 1:M 

                A = U_2(j-2,i); 

                B = U_2(j-1,i); 
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                C = U_1(j,i); 

                D = U_1(j+1,i); 

                E = U_1(j+2,i); 

            elseif y_points == 1 && (direction == 3 || direction == 0) 

                    %When there is 1 available new value and 

                    %the sweep direction is M:1 

                A = U_1(j-2,i); 

                B = U_1(j-1,i); 

                C = U_1(j,i); 

                D = U_2(j+1,i); 

                E = U_1(j+2,i); 

            elseif y_points >= 2 && (direction == 3 || direction == 0) 

                    %When there is 2 or more available new values and 

                    %the sweep direction is M:1 

                A = U_1(j-2,i); 

                B = U_1(j-1,i); 

                C = U_1(j,i); 

                D = U_2(j+1,i); 

                E = U_2(j+2,i); 

            end 

                %Calculate positive flux terms 

            gpm2 = 0.5*(0.5*(1/sqrt(2))*A^2 + alphaFlux_X*A); 

            gpm1 = 0.5*(0.5*(1/sqrt(2))*B^2 + alphaFlux_X*B); 

            gp = 0.5*(0.5*(1/sqrt(2))*C^2 + alphaFlux_X*C); 

            gpp1 = 0.5*(0.5*(1/sqrt(2))*D^2 + alphaFlux_X*D); 

            gpp2 = 0.5*(0.5*(1/sqrt(2))*E^2 + alphaFlux_X*E); 

                %Calculate negative flux terms 

            gmm2 = 0.5*(0.5*(1/sqrt(2))*A^2 - alphaFlux_X*A); 

            gmm1 = 0.5*(0.5*(1/sqrt(2))*B^2 - alphaFlux_X*B); 

            gm = 0.5*(0.5*(1/sqrt(2))*C^2 - alphaFlux_X*C); 

            gmp1 = 0.5*(0.5*(1/sqrt(2))*D^2 - alphaFlux_X*D); 

            gmp2 = 0.5*(0.5*(1/sqrt(2))*E^2 - alphaFlux_X*E); 

                %Calculate positive flux terms at i+1/2 position 

            b0 = (gpp1 - gp)^2; 

            b1 = (gp - gpm1)^2; 

            a0 = (2/3)/(epsilon + b0)^2; 

            a1 = (1/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            gpp = w0*(0.5*gp + 0.5*gpp1) + w1*(-0.5*gpm1 + (3/2)*gp); 

                %Calculate positive flux terms at i-1/2 position 

            b0 = (gp - gpm1)^2; 

            b1 = (gpm1 - gpm2)^2; 

            a0 = (2/3)/(epsilon + b0)^2; 

            a1 = (1/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            gpm = w0*(0.5*gpm1 + 0.5*gp) + w1*(-0.5*gpm2 + (3/2)*gpm1); 

                %Calculate negative flux terms at i+1/2 position 

            b0 = (gmp2 - gmp1)^2; 

            b1 = (gmp1 - gm)^2; 

            a0 = (1/3)/(epsilon + b0)^2; 

            a1 = (2/3)/(epsilon + b1)^2; 
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            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            gmp = w0*((3/2)*gmp1 - 0.5*gmp2) + w1*(0.5*gm + 0.5*gmp1); 

                %Calculate negative flux terms at i-1/2 position 

            b0 = (gmp1 - gm)^2; 

            b1 = (gm - gmm1)^2; 

            a0 = (1/3)/(epsilon + b0)^2; 

            a1 = (2/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            gmm = w0*((3/2)*gm - 0.5*gmp1) + w1*(0.5*gmm1 + 0.5*gm); 

                %Combine terms 

            ghp = gpp + gmp; 

            ghm = gpm + gmm; 

 

            %X direction 

            %Determine stencil parameters 

            if x_points == 0 

                    %When there are no available new values 

                A = U_1(j,i-2); 

                B = U_1(j,i-1); 

                C = U_1(j,i); 

                D = U_1(j,i+1); 

                E = U_1(j,i+2); 

            elseif x_points == 1 && (direction == 1 || direction == 0) 

                    %When there is 1 available new value and 

                    %the sweep direction is 1:N 

                A = U_1(j,i-2); 

                B = U_2(j,i-1); 

                C = U_1(j,i); 

                D = U_1(j,i+1); 

                E = U_1(j,i+2); 

            elseif x_points >= 2 && (direction == 1 || direction == 0) 

                    %When there is 2 or more available new values and 

                    %the sweep direction is 1:N 

                A = U_2(j,i-2); 

                B = U_2(j,i-1); 

                C = U_1(j,i); 

                D = U_1(j,i+1); 

                E = U_1(j,i+2); 

            elseif x_points == 1 && (direction == 2 || direction == 3) 

                    %When there is 1 available new value and 

                    %the sweep direction is N:1 

                A = U_1(j,i-2); 

                B = U_1(j,i-1); 

                C = U_1(j,i); 

                D = U_2(j,i+1); 

                E = U_1(j,i+2); 

            elseif x_points >= 2 && (direction == 2 || direction == 3) 

                    %When there is 2 or more available new values and 

                    %the sweep direction is N:1 

                A = U_1(j,i-2); 

                B = U_1(j,i-1); 
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                C = U_1(j,i); 

                D = U_2(j,i+1); 

                E = U_2(j,i+2); 

            end 

                %Calculate positive flux terms 

            fpm2 = 0.5*(0.5*(1/sqrt(2))*A^2 + alphaFlux_X*A); 

            fpm1 = 0.5*(0.5*(1/sqrt(2))*B^2 + alphaFlux_X*B); 

            fp = 0.5*(0.5*(1/sqrt(2))*C^2 + alphaFlux_X*C); 

            fpp1 = 0.5*(0.5*(1/sqrt(2))*D^2 + alphaFlux_X*D); 

            fpp2 = 0.5*(0.5*(1/sqrt(2))*E^2 + alphaFlux_X*E); 

             %Calculate negative flux terms 

            fmm2 = 0.5*(0.5*(1/sqrt(2))*A^2 - alphaFlux_X*A); 

            fmm1 = 0.5*(0.5*(1/sqrt(2))*B^2 - alphaFlux_X*B); 

            fm = 0.5*(0.5*(1/sqrt(2))*C^2 - alphaFlux_X*C); 

            fmp1 = 0.5*(0.5*(1/sqrt(2))*D^2 - alphaFlux_X*D); 

            fmp2 = 0.5*(0.5*(1/sqrt(2))*E^2 - alphaFlux_X*E); 

                %Calculate positive flux terms at i+1/2 position 

            b0 = (fpp1 - fp)^2; 

            b1 = (fp - fpm1)^2; 

            a0 = (2/3)/(epsilon + b0)^2; 

            a1 = (1/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            fpp = w0*(0.5*fp + 0.5*fpp1) + w1*(-0.5*fpm1 + (3/2)*fp); 

             %Calculate positive flux terms at i-1/2 position 

            b0 = (fp - fpm1)^2; 

            b1 = (fpm1 - fpm2)^2; 

            a0 = (2/3)/(epsilon + b0)^2; 

            a1 = (1/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            fpm = w0*(0.5*fpm1 + 0.5*fp) + w1*(-0.5*fpm2 + (3/2)*fpm1); 

             %Calculate negative flux terms at i+1/2 position 

            b0 = (fmp2 - fmp1)^2; 

            b1 = (fmp1 - fm)^2; 

            a0 = (1/3)/(epsilon + b0)^2; 

            a1 = (2/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            fmp = w0*((3/2)*fmp1 - 0.5*fmp2) + w1*(0.5*fm + 0.5*fmp1); 

             %Calculate negative flux terms at i-1/2 position 

            b0 = (fmp1 - fm)^2; 

            b1 = (fm - fmm1)^2; 

            a0 = (1/3)/(epsilon + b0)^2; 

            a1 = (2/3)/(epsilon + b1)^2; 

            w0 = a0/(a0 + a1); 

            w1 = a1/(a0 + a1); 

            fmm = w0*((3/2)*fm - 0.5*fmp1) + w1*(0.5*fmm1 + 0.5*fm); 

                %Combine terms 

            fhp = fpp + fmp; 

            fhm = fpm + fmm; 

            term = X(i) + Y(j); 

            term = pi*term; 
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            term = term/sqrt(2); 

                %Calculate L 

            L = -((1/DX)*(fhp - fhm)) - ((1/DY)*(ghp - ghm)) + ... 

                (sin((X(i) + Y(j))/(sqrt(2))))*(cos((X(i) + Y(j))/(sqrt(2)))); 

                %Calculate U2 

            U_2(j,i) = U_1(j,i) + (gamma/4)*(1/((alphaFlux_X/DX) + (alphaFlux_X/DY) ))*L; 

                %Calculate L with extrapolation factor 

            U_2(j,i) = omega*U_2(j,i) + (1-omega)*U_1(j,i); 

                %Increase the number of new Y values 

            y_points = y_points + 1; 

        end 

            %Increase the number of new X values 

        x_points = x_points + 1; 

            %Reset the number of Y values 

        y_points = 0; 

    end 

        %Reset both X and Y values 

    x_points = 0; 

    y_points = 0; 

        %Iterate through all points, not including ghost points 

        %in order to calculate Un+1 

for i = listx(3:end-2); 

 for j = listy(3:end-2); 

        %Y direction 

        %Determine stencil parameters 

        if y_points == 0 

                %When there are no available new values 

            A = U_2(j-2,i); 

            B = U_2(j-1,i); 

            C = U_2(j,i); 

            D = U_2(j+1,i); 

            E = U_2(j+2,i); 

        elseif y_points == 1 && (direction == 1 || direction == 2) 

                %When there is 1 available new value and 

                %the sweep direction is 1:M 

            A = U_2(j-2,i); 

            B = U_new(j-1,i); 

            C = U_2(j,i); 

            D = U_2(j+1,i); 

            E = U_2(j+2,i); 

        elseif y_points >= 2 && (direction == 1 || direction == 2) 

                %When there is 2 or more available new values and 

                %the sweep direction is 1:M 

            A = U_new(j-2,i); 

            B = U_new(j-1,i); 

            C = U_2(j,i); 

            D = U_2(j+1,i); 

            E = U_2(j+2,i); 

        elseif y_points == 1 && (direction == 3 || direction == 0) 

                %When there is 1 available new value and 

                %the sweep direction is M:1 

            A = U_2(j-2,i); 

            B = U_2(j-1,i); 
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            C = U_2(j,i); 

            D = U_new(j+1,i); 

            E = U_2(j+2,i); 

        elseif y_points >= 2 && (direction == 3 || direction == 0) 

                %When there is 2 or more available new values and 

                %the sweep direction is M:1 

            A = U_2(j-2,i); 

            B = U_2(j-1,i); 

            C = U_2(j,i); 

            D = U_new(j+1,i); 

            E = U_new(j+2,i); 

        end 

            %Calculate positive flux terms 

        gpm2 = 0.5*(0.5*(1/sqrt(2))*A^2 + alphaFlux_X*A); 

        gpm1 = 0.5*(0.5*(1/sqrt(2))*B^2 + alphaFlux_X*B); 

        gp = 0.5*(0.5*(1/sqrt(2))*C^2 + alphaFlux_X*C); 

        gpp1 = 0.5*(0.5*(1/sqrt(2))*D^2 + alphaFlux_X*D); 

        gpp2 = 0.5*(0.5*(1/sqrt(2))*E^2 + alphaFlux_X*E); 

            %Calculate negative flux terms 

        gmm2 = 0.5*(0.5*(1/sqrt(2))*A^2 - alphaFlux_X*A); 

        gmm1 = 0.5*(0.5*(1/sqrt(2))*B^2 - alphaFlux_X*B); 

        gm = 0.5*(0.5*(1/sqrt(2))*C^2 - alphaFlux_X*C); 

        gmp1 = 0.5*(0.5*(1/sqrt(2))*D^2 - alphaFlux_X*D); 

        gmp2 = 0.5*(0.5*(1/sqrt(2))*E^2 - alphaFlux_X*E); 

         %Calculate positive flux terms at i+1/2 position 

        b0 = (gpp1 - gp)^2; 

        b1 = (gp - gpm1)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        gpp = w0*(0.5*gp + 0.5*gpp1) + w1*(-0.5*gpm1 + (3/2)*gp); 

         %Calculate positive flux terms at i-1/2 position 

        b0 = (gp - gpm1)^2; 

        b1 = (gpm1 - gpm2)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        gpm = w0*(0.5*gpm1 + 0.5*gp) + w1*(-0.5*gpm2 + (3/2)*gpm1); 

         %Calculate negative flux terms at i+1/2 position 

        b0 = (gmp2 - gmp1)^2; 

        b1 = (gmp1 - gm)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        gmp = w0*((3/2)*gmp1 - 0.5*gmp2) + w1*(0.5*gm + 0.5*gmp1); 

            %Calculate negative flux terms at i-1/2 position 

        b0 = (gmp1 - gm)^2; 

        b1 = (gm - gmm1)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 
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        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        gmm = w0*((3/2)*gm - 0.5*gmp1) + w1*(0.5*gmm1 + 0.5*gm); 

         %Combine terms 

        ghp = gpp + gmp; 

        ghm = gpm + gmm; 

 

        %X direction 

        %Determine stencil parameters 

        if x_points == 0 

                %When there are no available new values 

            A = U_2(j,i-2); 

            B = U_2(j,i-1); 

            C = U_2(j,i); 

            D = U_2(j,i+1); 

            E = U_2(j,i+2); 

        elseif x_points == 1 && (direction == 1 || direction == 0) 

                %When there is 1 available new value and 

                %the sweep direction is 1:N 

            A = U_2(j,i-2); 

            B = U_new(j,i-1); 

            C = U_2(j,i); 

            D = U_2(j,i+1); 

            E = U_2(j,i+2); 

        elseif x_points >= 2 && (direction == 1 || direction == 0) 

                %When there is 2 or more available new values and 

                %the sweep direction is 1:N 

            A = U_new(j,i-2); 

            B = U_new(j,i-1); 

            C = U_2(j,i); 

            D = U_2(j,i+1); 

            E = U_2(j,i+2); 

        elseif x_points == 1 && (direction == 2 || direction == 3) 

                %When there is 1 available new value and 

                %the sweep direction is N:1 

            A = U_2(j,i-2); 

            B = U_2(j,i-1); 

            C = U_2(j,i); 

            D = U_new(j,i+1); 

            E = U_2(j,i+2); 

        elseif x_points >= 2 && (direction == 2 || direction == 3) 

                %When there is 2 or more available new values and 

                %the sweep direction is N:1 

            A = U_2(j,i-2); 

            B = U_2(j,i-1); 

            C = U_2(j,i); 

            D = U_new(j,i+1); 

            E = U_new(j,i+2); 

        end 

         %Calculate positive flux terms 

        fpm2 = 0.5*(0.5*(1/sqrt(2))*A^2 + alphaFlux_X*A); 

        fpm1 = 0.5*(0.5*(1/sqrt(2))*B^2 + alphaFlux_X*B); 

        fp = 0.5*(0.5*(1/sqrt(2))*C^2 + alphaFlux_X*C); 
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        fpp1 = 0.5*(0.5*(1/sqrt(2))*D^2 + alphaFlux_X*D); 

        fpp2 = 0.5*(0.5*(1/sqrt(2))*E^2 + alphaFlux_X*E); 

         %Calculate negative flux terms 

        fmm2 = 0.5*(0.5*(1/sqrt(2))*A^2 - alphaFlux_X*A); 

        fmm1 = 0.5*(0.5*(1/sqrt(2))*B^2 - alphaFlux_X*B); 

        fm = 0.5*(0.5*(1/sqrt(2))*C^2 - alphaFlux_X*C); 

        fmp1 = 0.5*(0.5*(1/sqrt(2))*D^2 - alphaFlux_X*D); 

        fmp2 = 0.5*(0.5*(1/sqrt(2))*E^2 - alphaFlux_X*E); 

         %Calculate positive flux terms at i+1/2 position 

        b0 = (fpp1 - fp)^2; 

        b1 = (fp - fpm1)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fpp = w0*(0.5*fp + 0.5*fpp1) + w1*(-0.5*fpm1 + (3/2)*fp); 

         %Calculate positive flux terms at i-1/2 position 

        b0 = (fp - fpm1)^2; 

        b1 = (fpm1 - fpm2)^2; 

        a0 = (2/3)/(epsilon + b0)^2; 

        a1 = (1/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fpm = w0*(0.5*fpm1 + 0.5*fp) + w1*(-0.5*fpm2 + (3/2)*fpm1); 

         %Calculate negative flux terms at i+1/2 position 

        b0 = (fmp2 - fmp1)^2; 

        b1 = (fmp1 - fm)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fmp = w0*((3/2)*fmp1 - 0.5*fmp2) + w1*(0.5*fm + 0.5*fmp1); 

         %Calculate negative flux terms at i-1/2 position 

        b0 = (fmp1 - fm)^2; 

        b1 = (fm - fmm1)^2; 

        a0 = (1/3)/(epsilon + b0)^2; 

        a1 = (2/3)/(epsilon + b1)^2; 

        w0 = a0/(a0 + a1); 

        w1 = a1/(a0 + a1); 

        fmm = w0*((3/2)*fm - 0.5*fmp1) + w1*(0.5*fmm1 + 0.5*fm); 

         %Combine terms 

        fhp = fpp + fmp; 

        fhm = fpm + fmm; 

        term = X(i) + Y(j); 

        term = pi*term; 

        term = term/sqrt(2); 

            %Calculate L 

        L = -((1/DX)*(fhp - fhm)) - ((1/DY)*(ghp - ghm)) + ... 

            (sin((X(i) + Y(j))/(sqrt(2))))*(cos((X(i) + Y(j))/(sqrt(2)))); 

            %Calculate Un+1 

        U_new(j,i) = U_2(j,i) + ((2*gamma)/3)*(1/((alphaFlux_X/DX) + (alphaFlux_X/DY) ))*L; 

            %Calculate Un+1 with extrapolation factor 

        U_new(j,i) = omega*U_new(j,i) + (1-omega)*U_2(j,i); 



93 
 

            %Increase the number of new Y values 

        y_points = y_points + 1; 

    end 

        %Increase the number of new X values 

    x_points = x_points + 1; 

        %Reset the number of Y values 

 y_points = 0; 

end 

        %Reset both X and Y values 

    x_points = 0; 

    y_points = 0; 

        %Update iteration count 

    iterations = iterations + 1; 

        %Calculate L1 norm of successive iterations 

    L1norm = max(max(abs(U_new - U))); 

        %Update U values 

    U = U_new; 

end 

    %Output iterations 

iterations 

    %Initialize exact and U variants with only diagonal elements 

counter = 0; 

for i = 1:numel(X) 

    for j = 1:numel(Y) 

        if i == j 

            counter = counter + 1; 

            D(counter) = U(j,i); 

            D_ex(counter) = exact(j,i); 

        end 

    end 

end 

    %Initialize exact and U variants without shock values 

Dm = D; 

Dm_ex = D_ex; 

    %Shock location 

c = 0.1; 

    %If the value of X is within 0.1 of the shock 

    %then zero out the values of exact and U variants 

for k = 1:numel(X) 

    if abs(X(k)-c)<=0.1 

        Dm(k) = 0; 

        Dm_ex(k) = 0; 

    end 

end 

    %Calculate L1 and Linfinity errors 

Linf_m = norm(Dm-Dm_ex,inf) 

L1_m = (1/numel(U_m))*norm(Dm-Dm_ex,1) 
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